ORIGINAL INVESTIGATION. Risk Factors for Ineffective Therapy in Patients With Bloodstream Infection

Similar documents
Nosocomial Infection in a Teaching Hospital in Thailand

Health Care Associated Infections in 2015 Acute Care Hospitals

Health Care Associated Infections in 2017 Acute Care Hospitals

Antibiotic Use and Resistance in Nursing Homes

Hospital-Acquired Infections in Intensive Care Unit Patients: An Overview with Emphasis on Epidemics

Epidemiological approach to nosocomial infection surveillance data: the Japanese Nosocomial Infection Surveillance System

How to Add an Annual Facility Survey

Healthcare-Associated Infections in North Carolina

Healthcare- Associated Infections in North Carolina

Surgical Site Infection Prevention: Guidelines, Recommendations and Best Practice

Supplementary Online Content

Assessing Evidence of Transmission and End of Transmission of Carbapenemase Producing Enterobacterales 1 (CPE)

Assessing microbial colonization of peripheral intravascular devices

Carbapenemase Producing Enterobacteriaceae (CPE) Prevention and Management Toolkit for Inpatient Areas

Infection Control Prevention Strategies. For Clinical Personnel

Performance Measurement of a Pharmacist-Directed Anticoagulation Management Service

International Journal of Scientific and Research Publications, Volume 4, Issue 1, January ISSN

Nosocomial and community-acquired infection rates of patients treated by prehospital advanced life support compared with other admitted patients

Provincial Surveillance

Using Electronic Health Records for Antibiotic Stewardship

Supplementary Online Content

BUGS BE GONE: Reducing HAIs and Streamlining Care!

Staphylococcus aureus bacteraemia in Australian public hospitals Australian hospital statistics

Infectious Diseases- HAI Tennessee Department of Health, Healthcare Associated Infections and Antimicrobial Resistance Program/ CEDEP

The Effect of Contact Precautions for MRSA on Patient Satisfaction Scores

Study Title: Optimal resuscitation in pediatric trauma an EAST multicenter study

Key words: critical care; hospital costs; ICU; mechanical ventilation; outcome; ventilator-associated pneumonia

Infection Control Prevention Strategies. For Clinical Personnel

Outpatient parenteral antimicrobial therapy

Healthcare- Associated Infections in North Carolina

Using the Trauma Quality Improvement Program (TQIP) Metrics Data to Change Clinical Practice Abigail R. Blackmore, MSN, RN Pamela W.

Author's response to reviews

Technical Notes on the Standardized Hospitalization Ratio (SHR) For the Dialysis Facility Reports

CIC Edizioni Internazionali. Nosocomial infections in an intensive care unit: predisposing role of enteral feeding tube in critically ill patients

National Priorities for Improvement:

NOSOCOMIAL INFECTION : NURSES ROLE IN MINIMIZING TRANSMISSION

The Management and Control of Hospital Acquired Infection in Acute NHS Trusts in England

MILITARY MEDICINE, 174, 9:899, 2009

August 22, Dear Sir or Madam:

The Urine Dipstick: A Quick Way To Over-Treat! Ann McFeeters, RN Infection Control Practitioner September 26, 2012

MHA/OHA HIIN Antibiotic Stewardship/MDRO Collaborative

Burden of MRSA Colonization in Elderly Residents of Nursing Homes: A Systematic Review and Meta Analysis

Understanding Readmissions after Cancer Surgery in Vulnerable Hospitals

Prioritization in isolation a reality in Infection Control. WH Seto Chief Infection Control Officer Hong Kong, China

VJ Periyakoil Productions presents

Burnout in ICU caregivers: A multicenter study of factors associated to centers

Nosocomial Infections. 7/25/18 Noon Conference Dan Van Aartsen PGY3 Internal Medicine

HOSPITAL QUALITY MEASURES. Overview of QM s

NHSN: An Update on the Risk Adjustment of HAI Data

The potential role of X ray technicians and mobile radiography. equipment in the transmission of multi-resistant drug resistant bacteria

Alabama Healthcare-Associated Infections Reporting and Prevention Program

Transforming Healthcare Using Machine Learning. John Guttag Dugald C. Jackson Professor Professor MIT EECS

The Use of NHSN in HAI Surveillance and Prevention

Version 2 15/12/2013

ORIGINAL INVESTIGATION. Potential Impact of the HIPAA Privacy Rule on Data Collection in a Registry of Patients With Acute Coronary Syndrome

DPM Sampling, Study Design, and Calculation Methods. Table of Contents

Predictors of In-Hospital vs Postdischarge Mortality in Pneumonia

Physician Use of Advance Care Planning Discussions in a Diverse Hospitalized Population

The impact of nighttime intensivists on medical intensive care unit infection-related indicators

Prospective assessment of hospital-acquired bloosdstream infections: how many may be preventable?

Healthcare Antibiotic Resistance Prevalence DC (HARP-DC)

Healthcare Acquired Infections

Quality Based Impacts to Medicare Inpatient Payments

Canadian Nosocomial Infection Surveillance Program (CNISP)

Challenges in Surveillance for Healthcare Associated Infections

Antimicrobial stewardship in Scotland: quality improvement agenda

Predictors of Clostridium Difficile Colitis Infections in Hospitals.

The Role of Isolation and Contact Precautions in the Elimination of Transmission of MRSA

HCAI Data Capture System User Manual. Case Capture: Main Data Collections

2017 Quality Reporting: Claims and Administrative Data-Based Quality Measures For Medicare Shared Savings Program and Next Generation ACO Model ACOs

Community Performance Report

Objectives 2/23/2011. Crossing Paths Intersection of Risk Adjustment and Coding

Rapid Response Report:

ORIGINAL CONTRIBUTION

CMS and NHSN: What s New for Infection Preventionists in 2013

Key prevention strategies for MRSA bacteraemia: a case study. Dr. Michael A. Borg Director of Infection Prevention & Control Mater Dei Hospital Malta

Presenters. Tiffany Osborn, MD, MPH. Laura Evans, MD MSc. Arjun Venkatesh, MD, MBA, MHS

Cause of death in intensive care patients within 2 years of discharge from hospital

A Program for Surveillance of Hospital-Acquired Infections in a General Hospital: A Two-Year Experience

Risk Factor Analysis for Postoperative Unplanned Intubation and Ventilator Dependence

Using Evidence to Develop a Local, Patients with Methicillin-Resistant

IMPACT OF RN HYPERTENSION PROTOCOL

Infectious EUH Learning Activities:

Antimicrobial Stewardship Program in the Nursing Home

SEPSIS RESEARCH WSHFT: THE IMPACT OF PREHOSPITAL SEPSIS SCREENING

C. difficile INFECTIONS

BEHAVIORAL HEALTH & LTC. Mary Ann Kellar, RN, MA, CHES, IC March 2011

Guidance for Control of Carbapenem-resistant Enterobacteriaceae (CRE) 2012 CRE Toolkit

An act to add Sections and to the Health and Safety Code, relating to health.

52 La Revue de Santé de la Méditerranée orientale, Vol. 11, N o 1/2, 2005

CLINICAL AND DEMOGRAPHIC CHARACTERISTICS OF ADULT VENTILATOR- ASSOCIATED PNEUMONIA PATIENTS AT A TERTIARY CARE HOSPITAL SYSTEM

75,000 Approxiamte amount of deaths ,000 Number of patients who contract HAIs each year 1. HAIs: Costing Everyone Too Much

Prairie North Regional Health Authority: Hospital-acquired infections

OREGON HEALTHCARE ACQUIRED INFECTIONS

Long-Stay Alternate Level of Care in Ontario Mental Health Beds

Improving the Use of Antimicrobials to Treat Gram-Positive Infections: Encouraging Appropriate Use and Minimizing Antimicrobial Resistance

Surveillance of Health Care Associated Infections in Long Term Care Settings. Sandra Callery RN MHSc CIC

VICNISS Hospital Acquired Infection Project. Year 5 report September 2007

Outpatient management of community acquired pneumonia

Overview of Revised LTC Surveillance Definitions

Transcription:

ORIGINAL INVESTIGATION Risk Factors for Ineffective Therapy in Patients With Bloodstream Infection Jay R. McDonald, MD; N. Deborah Friedman, MBBS; Jason E. Stout, MD, MHS; Daniel J. Sexton, MD; Keith S. Kaye, MD, MPH Background: Infections occurring among outpatients having recent contact with the health care system have been termed health care associated infections. The objective of this study was to analyze the impact of health care associated status on effectiveness of initial therapy in hospitalized patients with bloodstream infections. Methods: Prospective cohort study of adults with bloodstream infections at 3 North Carolina hospitals. Bloodstream infection was defined as health care associated if it occurred within the first 48 hours after hospitalization and if patients had 1 of the following characteristics: had received home health services, outpatient intravenous therapy, or outpatient renal dialysis in the 30 days prior to hospital admission; had been hospitalized within 90 days prior to admission; or lived in a longterm care facility. Results: Of 466 bloodstream infections, 132 (28%) were community-acquired, 178 (38%) were health care associated, and 156 (33%) were nosocomial. Multivariable logistic regression using community-acquired status as a reference identified health care associated status (odds ratio, 3.1; 95% confidence interval, 1.6-6.1) and nosocomial status (odds ratio, 4.3; 95% confidence interval, 2.2-8.3) as independent predictors of ineffective initial antibiotic therapy. Among health care associated characteristics, hospitalization in the 90 days prior to admission was independently associated with ineffective initial therapy (odds ratio, 2.4; 95% confidence interval, 1.4-4.2). Conclusions: Among patients treated in the hospital for bloodstream infection, health care associated status was an independent predictor of ineffective initial antibiotic therapy. Hospitalization within 90 days prior to hospital admission was the component of health care associated status most strongly associated with ineffective initial therapy. Arch Intern Med. 2005;165:308-313 Author Affiliations: Division of Infectious Diseases, Duke University Medical Center, Durham, NC (Drs McDonald, Stout, Sexton, and Kaye); and Infectious Diseases Department, Monash Medical Centre, Clayton, Victoria, Australia (Dr Friedman). Financial Disclosure: None. BLOODSTREAM INFECTION IN hospitalized patients is a common and deadly problem. Between 0.5% and 1.3% of patients develop a bloodstream infection during hospitalization. 1 Inhospital mortality estimates among patients with bloodstream infection vary between 30% and 40%. 2-7 Early administration of effective antimicrobial therapy to patients with bloodstream infection has been repeatedly shown to improve mortality in patients with community-acquired and nosocomial bloodstream infection. 2,7-18 Ineffective empirical therapy, defined as empirical therapy that is inactive (as determined by in vitro testing) against the infecting organism(s), is a common occurrence. Previous studies have reported rates of between 15% and 40% for ineffective empirical therapy for bloodstream infection. 2-4,8,9,12,19,20 Risk factors for delays in effective therapy for bloodstream infection include recent prior antimicrobial therapy, nosocomial acquisition, presence of an intravascular catheter, lack of infectious diseases consultation, 15,21,22 and infection due to specific types of pathogens, including gramnegative bacilli, Candida species, enterococci, and polymicrobial infections. 13,15 Health care associated status is a recently described epidemiologic category that is distinct from both communityacquired and nosocomial status. 23-25 Friedman et al 24 have described the epidemiology, microbiology, and outcomes of a cohort of patients with health care associated bloodstream infections. We performed additional analysis on data from this cohort to describe the prescribed antimicrobial therapy and to evaluate risk factors for ineffective initial antimicrobial therapy. We hypothesized that health care associated status would be an independent risk factor for ineffective initial therapy. 308

METHODS This prospective cohort study was undertaken simultaneously at 3 medical centers: Duke University Medical Center (Durham, NC), Durham Regional Hospital (Durham), and Nash General Hospital (Rocky Mount, NC). 24 The study protocol was approved by the institutional review boards at all 3 centers, and the requirement for informed consent was waived. PATIENTS Patients were identified by daily review of microbiology laboratory records from October 16, 2000, through February 28, 2001. Patients were included in the study if their blood cultures were drawn either in the hospital or in the clinic or emergency department immediately prior to admission and if the culture results were positive for fungus or bacteria. Patients with blood culture results positive for mycobacteria or viruses were excluded. Patients younger than 17 years and patients discharged from the emergency department without hospitalization were excluded. 24 Only the first episode of bloodstream infection per patient was included. DATA COLLECTION Case report forms were completed by either a physician or an infection control practitioner. Mortality data were obtained from the patient s medical record as well as from the Social Security Death Index. 26 Data pertaining to mortality were collected at hospital discharge and 3 to 6 months after bloodstream infection. In some cases where data collection was incomplete, paper charts were reviewed to augment collected data. DEFINITIONS A candidate episode of bloodstream infection was defined as the first set of positive blood culture results during a period of hospitalization or in a clinic or emergency department visit immediately preceding hospitalization. Each candidate episode of bloodstream infection was prospectively followed up and was continuously assessed by 1 investigator in the manner previously described by Weinstein et al, 19 using all available clinical data to classify episodes as contaminant, true positive, or of unknown clinical significance. Only candidate episodes of bloodstream infection classified as true positive were analyzed in this study. Bloodstream infection was defined as nosocomial when it occurred more than 48 hours after the beginning of a period of hospitalization. If a patient was transferred from another hospital, the duration of inpatient stay was calculated from the date of admission to the first hospital. Bloodstream infection was defined as a health care associated when it occurred at the time of hospital admission or within 48 hours of admission and if the patient fulfilled any of the following criteria: 1. Received intravenous therapy at home or in an outpatient clinic in the previous 30 days; or 2. Received home health care such as wound care or specialized nursing care through a health care agency, family, or friends in the previous 30 days; or 3. Received renal dialysis in a hospital or clinic in the previous 30 days; or 4. Had been hospitalized in an acute care hospital for 2 or more days in the previous 90 days; or 5. Resided in a nursing home or long-term care facility for 2 or more days in the previous 90 days. Bloodstream infection was defined as community-acquired when it occurred within the first 48 hours of hospital admission for patients who did not fit the criteria for health care associated bloodstream infection. Antibiotic therapy was defined as effective if the antimicrobial agent administered was active in vitro against the infecting organism and if the drug was given at adequate doses and by adequate route of administration. In the case of organisms for which antimicrobial susceptibilities are not routinely performed (eg, anaerobic organisms and Candida species), therapy was considered effective if the antibiotic administered was a recommended first-line or alternate agent for the infecting organism. 27 Initial therapy was defined as antibiotics received on the first day of therapy for bloodstream infection. Effective antibiotics administered on or before the same calendar day as the first blood culture were considered to have been started on day 0. If effective antibiotics were not administered by day 5 of antibiotic therapy, then time to effective therapy was censored at day 5, so as to dampen the impact of bloodstream infection episodes that were never effectively treated. Time to effective therapy was censored at day 5 in 5 patients. Other definitions used for this cohort, including comorbid conditions, predisposing factors, and primary source of infection, have been published previously. 24 STATISTICAL ANALYSIS Statistical analysis was performed using SAS version 8.2 (SAS Institute Inc, Cary, NC). Differences between continuous variables by group were tested using the Wilcoxon rank-sum test. The 2 or Fisher exact test, as appropriate, were used to assess associations among categorical variables. Associations between epidemiologic categories of infection and other variables were analyzed by using conditional fixed-effects logistic regression to adjust for hospital site. Variables with a bivariate significance level of 0.20 or less were included in the initial multivariable models. Variables to be included in the final model were selected using a stepwise selection process. All predictors were checked for confounding. If the addition of a confounding variable affected the -coefficient for the effect measure of a selected variable by greater than 10%, it was left in the model. Dummy variables were used to represent 2 of the 3 hospitals (the third hospital being the baseline) as well as 2 of the 3 epidemiological categories of infection, thereby adjusting for clustering of epidemiological factors and outcome by hospital site. 28 All tests were 2-tailed, with a P value of.05 or less considered statistically significant. RESULTS Between October 16, 2000, and February 28, 2001, a total of 466 patients with bloodstream infection met criteria for inclusion in the study. The flow of cultures and patients considered for inclusion in the study is shown in the Figure. Of the 466 episodes of bloodstream infection, 132 (28%) were community-acquired, 178 (38%) were health care associated, and 156 (33%) were nosocomial. Three hundredseven(65.9%) bloodstreaminfectionsoccurredatduke UniversityMedicalCenter, 104(22.3%) atdurhamregional Hospital, and 55 (11.8%) at Nash General Hospital. POPULATION CHARACTERISTICS Descriptive characteristics of this cohort are shown in Table 1. All comparisons between epidemiological cat- 309

1175 Blood Cultures Positive for Infection 655 Cultures With True-Positive Results 648 Cultures Representing 504 Episodes of Bloodstream Infection 520 Excluded 476 Positive Only for Contaminants 44 Unknown Significance 7 Excluded (Patient Not Admitted to Hospital) 38 Episodes Excluded 30 Incomplete Antibiotic Data 8 Culture Positive for Mycobacteria The microbiological characteristics of these bloodstream infections is shown in Table 2. The pathogens most frequently found in community-acquired bloodstream infection were Escherichia coli and Streptococcus pneumoniae. Staphylococcus aureus was the pathogen most frequently found among patients with nosocomial and health care associated bloodstream infection. Enterococci resistant to ampicillin and/or vancomycin were seen more frequently in patients with nosocomial bloodstream infection (8/156 [5%]) than in those with community-acquired bloodstream infection (0/ 132) (P=.009). Enterobacteriaceae of intermediate susceptibility or resistant to ciprofloxacin and/or ampicillin/ sulbactam occurred at a similar rates in patients with community-acquired bloodstream infection (8%), health care associated bloodstream infection (12%), and nosocomial bloodstream infection (12%) (P.40 for each pairwise comparison). Of 14 fungal bloodstream infections, 9 were due to Candida and 5 were due to Cryptococcus. Nearly two thirds of patients (295/466 [63.3%]) received a single antimicrobial agent as their initial empirical therapy. More than a quarter of patients (127/ 466 [27.3%]) received 2 antimicrobial agents, 8.4% (39/ 466) received 3, and 1.1% (5/466) received 4 or more. The most commonly prescribed antimicrobial agents were vancomycin (37.6% of patients), quinolones (30.7%), third-generation cephalosporins (20.8%), -lactam/ lactamase inhibitor combinations (15.0%), and aminoglycosides (12.7%). All other classes of antimicrobials were used in less than 4% of patients. EFFECTIVENESS OF THERAPY 466 Episodes Included in Study Figure. Flowchart of bloodstream infection episodes considered for inclusion in study. Asterisk indicates as defined by Weinstein et al. 19 egories were controlled for the effects of clustering by hospital. The mean age of the study patients was 60.4±18.2 years, and patients with health care associated bloodstream infection were significantly younger than those with community-acquired infection (59.0 years vs 63.4 years, P=.04). Fifty-three percent of patients were men, and 56% were white. The most common comorbid conditions were vascular disease (192 patients [41%]), renal disease (144 [31%]), diabetes mellitus (135 [29%]), and cancer (126 [27%]). The most common sources of bloodstream infection were an intravascular device (138 patients [30%]), urinary tract infection (111 [24%]), and pneumonia (80 [17%]). Of 178 patients with health care associated bloodstream infection, 112 (63%) had been hospitalized in the past 90 days, 73 (41%) had received outpatient intravenous therapy or chemotherapy in the past 30 days, 60 (34%) had received home health services in the past 30 days, 57 (32%) had received hemodialysis in the past 30 days, and 36 (20%) were residents of long-term care facilities. ANTIMICROBIAL THERAPY After controlling for hospital, the time from positive blood culture result to start of initial empirical therapy was similar for community-acquired, health care associated, and nosocomial bloodstream infection (median for all groups, 1 day; P=.46). Among patients who received ineffective initial therapy, patients with community-acquired, health care associated, and nosocomial bloodstream infection had similar durations of ineffective therapy (median, 2.0 days for all 3 groups; P=.98). Patients with nosocomial bloodstream infection received ineffective initial therapy in 32.1% of episodes, compared with 8.3% of episodes for those with communityacquired bloodstream infection (odds ratio [OR], 5.1; 95% confidence interval [CI], 2.5-10.4; P.001). Patients with health care associated bloodstream infection received ineffective initial therapy 25.3% of the time compared with 8.3% for those with community-acquired bloodstream infection (OR, 3.2; 95% CI, 1.7-6.0; P.001). There was no statistical difference between the proportion of patients receiving ineffective initial therapy for nosocomial bloodstream infection compared with those with health care associated bloodstream infection (P =.13). Bivariate predictors of ineffective initial therapy, controlled for hospital, are shown in Table 3. Multivariable analysis was performed to determine independent predictors of ineffective initial therapy. A multivariable model was constructed (Table 4) that considered all demographic characteristics, comorbid conditions, primary sites of infection, and pathogens for inclusion. Health care associated status was a significant independent predictor of ineffective initial therapy (odds ratio, 2.4; 95% CI, 1.2-4.8), as was nosocomial status (odds ratio, 3.1; 95% CI, 1.5-6.5), using communityacquired status as the reference category. Methicillinresistant S aureus (OR, 1.7; 95% CI, 1.0-2.8) and Enterococcus (OR, 2.3; 95% CI, 1.3-4.1) were associated with an increased likelihood of receiving inappropriate initial therapy, and infection due to Ecoliwas associated with a decreased risk for ineffective therapy (OR, 0.3; 95% CI, 0.1-0.9). This model was controlled for the confounding effects of other pathogens (S pneumoniae and methicillin-susceptible S aureus), the presence of neutropenia at the time of bloodstream infection, and the presence of an intravenous device. When health care associated status was replaced in the model by its 5 individual defining features (dialysis, nursing home resi- 310

Table 1. Clinical Characteristics of Patients With Bloodstream Infections, by Epidemiological Category Study Patients, No. (%) P Value Characteristic Total Population Risk factors for health care associated infection are becoming increasingly prevalent as medical care is deliv- Community- Nosocomial Community- vs Health Care Community- vs Nosocomial vs Nosocomial Patients 466 (100) 132 (28.3) 178 (38.2) 156 (33.5) Demographic characteristics Age, mean ± SD, y 60.4 ± 18.2 63.4 ± 17.9 59.0 ± 18.1 59.4 ± 18.5.04.72.83 Men 248 (53.2) 70 (53.0) 90 (50.6) 88 (56.4).67.57.29 White race 262 (56.2) 67 (50.8) 93 (52.3) 102 (65.4).25.05.07 Intensive care unit 140 (30.0) 28 (21.2) 40 (22.5) 72 (46.2).79.001.001 Comorbid conditions Vascular disease 192 (41.2) 48 (36.4) 77 (43.2) 67 (43.0).22.26.95 Renal disease 144 (31.3) 31 (23.9) 70 (39.8) 43 (27.9).003.44.02 Diabetes mellitus 135 (28.9) 37 (28.0) 55 (30.9) 43 (27.6).58.93.50 Cancer 126 (27.0) 17 (12.9) 53 (29.8) 56 (35.9).001.001.23 Chronic obstructive 76 (16.3) 24 (18.2) 25 (14.0) 27 (17.3).32.84.41 pulmonary disease Source of bacteremia Intravascular device 138 (29.6) 0 66 (37.1) 72 (46.2).001.001.09 infection Urinary tract infection 111 (23.8) 56 (42.4) 29 (16.3) 26 (16.7).001.001.93 Pneumonia 80 (17.2) 33 (25.0) 27 (15.2) 20 (12.8).03.008.54 Ineffective initial therapy 106 (22.8) 11 (8.3) 45 (25.3) 50 (32.1).001.001.17 Outcomes In-hospital mortality 100 (21.5) 18 (13.6) 35 (19.7) 47 (30.1).16.001.03 3- to 6-mo mortality 132 (28.3) 22 (16.7) 51 (28.7) 59 (37.8).01.001.08 Table 2. Microbiological Characteristics of Bloodstream Infections, by Epidemiological Category Study Patients, No. (%) P Value Total Community Characteristic Population Nosocomial Patients 466 (100) 132 (28.3) 178 (38.2) 156 (33.5) Bacterial Community- vs Community- vs Nosocomial vs Nosocomial Gram-positive 258 (55.4) 66 (50.0) 100 (56.2) 92 (59.0).28.13.61 Methicillin-resistant 61 (13.1) 2 (1.5) 32 (18.0) 27 (17.3).001.001.87 Staphylococcus aureus Coagulase-negative 45 (9.7) 4 (3.0) 10 (5.6) 31 (19.9).28.001.001 Staphylococci Streptococcus pneumoniae 35 (7.5) 26 (19.7) 9 (5.1) 0.001.001.004 Enterococcus 32 (6.9) 8 (6.1) 12 (6.7) 12 (7.7).81.59.74 Gram-negative 159 (34.1) 57 (43.2) 59 (33.2) 43 (27.6).07.006.27 Escherichia coli 66 (14.2) 35 (26.5) 18 (10.1) 13 (8.3).001.001.58 Pseudomonas 21 (4.5) 2 (1.5) 12 (6.7) 7 (4.5).03.15.37 Yeast 14 (3.0) 4 (3.0) 4 (2.3) 6 (3.9).67.70.39 Polymicrobial 35 (7.5) 5 (3.8) 15 (8.4) 15 (9.6).10.05.70 dence, receipt of home health care, receipt of home intravenous therapy, and hospitalization in the past 90 days), hospitalization in the 90 days preceding bloodstream infection (OR, 2.4; 95% confidence interval, 1.4-4.2) was identified as the only component of health care associated status that predicted ineffective initial therapy. MORTALITY OUTCOMES The inpatient mortality rate for all patients included in the study was 21% (100/466 patients) (Table 1). There was no significant difference in inpatient mortality rates among the 3 study hospitals. The rate of inpatient mortality was similar in patients receiving effective empirical therapy (20.3%) compared with those receiving ineffective empirical therapy (25.5%) (P=.25). COMMENT 311

Table 3. Bivariate Predictors of Ineffective Initial Therapy* Variable OR (95% CI) P Value Demographic characteristics Age (per decade) 1.00.86 Men 1.02 (0.73-1.44).89 White race 1.32 (0.94-1.87).11 Intensive care unit 1.33 (0.93-1.91).12 Comorbid conditions Vascular disease 1.14 (0.81-1.59).45 Renal disease 1.25 (0.84-1.87).26 Diabetes mellitus 1.05 (0.73-1.51).80 Cancer 0.93 (0.63-1.38).71 Chronic obstructive pulmonary disease 1.12 (0.72-1.74).61 Source of bacteremia Intravascular device infection 1.65 (1.18-2.31).004 Urinary tract infection 0.79 (0.50-1.23).28 Pneumonia 0.73 (0.44-1.20).20 Microbiology Bacterial Methicillin-resistant 2.21 (1.55-3.15).001 Staphylococcus aureus Coagulase-negative Staphylococci 1.07 (0.62-1.85).80 Streptococcus pneumoniae 0.46 (0.18-1.20).08 Enterococcus 2.42 (1.64-3.57).001 Escherichia coli 0.17 (0.06-0.54).001 Pseudomonas 1.05 (0.48-2.30).91 Yeast 1.59 (0.76-3.30).25 Polymicrobial 1.31 (0.83-2.07).27 Epidemiological category Health care acquired vs 3.17 (1.67-5.99).001 community-acquired Health care acquired vs nosocomial 0.76 (0.54-1.08).13 Nosocomial vs community-acquired 5.08 (2.48-10.42).001 Abbreviations: CI, confidence interval; OR, odds ratio. *Controlled for hospital. ered more frequently in nonhospital settings. In this prospectively assembled cohort of 466 consecutive bloodstream infections at 3 hospitals, more patients had health care associated bloodstream infection than either nosocomial or community-acquired bloodstream infection. We examined the relationship between ineffective initial therapy and health care associated status in this cohort. To our knowledge, no previously published study has examined this relationship. In this study, patients with health care associated bloodstream infection were 3 times more likely than patients with community-acquired bloodstream infection to receive ineffective initial antibiotic therapy. Based on the known differences between the group with health care associated bloodstream infection and that with community-acquired bloodstream infection this finding is not completely unexpected, but the magnitude of the difference between the groups with health care associated and community-acquired infection and the similarity between rates of ineffective empirical therapy for patients with health care associated and nosocomial infection is notable. In multivariable analysis, health care associated status was an independent risk factor for receipt of ineffective initial antimicrobial therapy. This finding highlights the importance of recognition of health care associated infections as an entity independent of Table 4. Multivariable Logistic Regression for Predictors of Ineffective Initial Therapy* Variable OR (95% CI) P Value Microbiology Methicillin-resistant 1.7 (1.0-2.8).04 Staphylococcus aureus Enterococcus 2.3 (1.3-4.1).004 Escherichia coli 0.3 (0.1-0.9).03 Epidemiological category Community-acquired 1.0 Health care acquired 2.4 (1.2-4.8).02 Nosocomial 3.1 (1.5-6.5).002 Abbreviations: CI, confidence interval; OR, odds ratio. *Confounders of variables in the model: neutropenia, presence of an intravenous device, methicillin-sensitive Staphylococcus aureus. Analysis of subsets of health care acquired bloodstream infection in place of the health care acquired epidemiological category resulted in the following hazard ratios: hospitalization for 2 d in the past 90 d, 1.8 (95% CI, 1.0-3.2; P =.04); home intravenous therapy, 1.8 (95% CI, 0.9-3.6; P =.11); home health care, 1.3 (95% CI, 0.7-2.6; P =.42); nursing home residence, 1.0 (95% CI, 0.5-2.2; P =.97); and hemodialysis, 0.6 (95% CI, 0.3-1.3; P =.18). community-acquired infections and should serve as a warning to clinicians that this growing segment of the patient population is at risk for suboptimal treatment and poor outcomes. Patients who acquire health care associated infections are a heterogeneous population of patients with different types of health care contact. Of the 5 defined subsets of health care associated status, only hospitalization within the past 90 days was an independent predictor of ineffective empirical therapy for bloodstream infection. We speculate that colonization with resistant microorganisms during the preceding hospital stay predisposed this group to subsequent infection with resistant organisms and that clinicians did not recognize prior hospitalization as a risk factor for ongoing colonization with resistant organisms. This information suggests that recent hospitalization is an underrecognized risk factor for ineffective initial therapy and adverse outcomes. There are several limitations to this study. All 3 hospitals are within an 80-mile radius, and geographic variation in practice patterns and antimicrobial resistance may limit generalizability to other regions. There is no consensus definition of health care associated status. We have used the same definition used in a previous publication, 24 which we believe is reasonable based on available literature. Our study variables did not include 2 factors that were shown by other investigators to be associated with receipt of ineffective initial therapy: antibiotic treatment in the previous month 13 and clinical involvement of an infectious diseases specialist in the care of the patient. 15 It is possible that inclusion of either of these variables in our model could have altered our results. Finally, in order to analyze a large number of variables that may impact the effectiveness of empirical antimicrobial therapy, we performed multiple statistical comparisons. Using a P value significance cutoff of.05, 1 of every 20 comparisons will be statistically significant by chance, and it is therefore possible that false conclusions were reached. For this reason, this and other similar studies 312

performing multiple comparisons should be viewed as exploratory and not absolutely conclusive. Proper empirical antibiotic therapy for serious infections can be life saving. Empirical choices are based on the most likely and virulent possible pathogens for a given infection. In order make the best possible empirical antibiotic choices, clinicians must be aware of changes in health care delivery and associated antimicrobial resistance. Our data can be used by clinicians to more effectively prescribe antibiotics for patients with suspected bloodstream infection and may lead to improved clinical outcomes in these patients. Accepted for Publication: November 16, 2004. Correspondence: Jay R. McDonald, MD, Box 3824, Duke University Medical Center, Durham, NC 27710 (mcdon034 @mc.duke.edu). Funding/Support: Dr McDonald was supported by a grant from the Agency for Healthcare Research and Quality. Dr Friedman was supported by an educational grant from Merck Pharmaceuticals. Dr Stout was supported by a K23 grant from the NIH/NIAID (AI051409). Dr Kaye was supported by a T. Franklin Williams Young Investigator Award from the Infectious Diseases Society of America, the Association of Subspecialty Professors, John A. Hartford Foundation, and Elan Pharmaceuticals. Previous Presentation: This study was presented in part at the Society for Healthcare Epidemiology of America 14th Annual Meeting; April 17-20, 2004; Philadelphia, Pa. REFERENCES 1. Increase in National Hospital Discharge Survey rates for septicemia United States, 1979-1987. MMWR Morb Mortal Wkly Rep. 1990; 39:31-34. 2. Bryan CS, Reynolds KL, Brenner ER. Analysis of 1,186 episodes of gramnegative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev Infect Dis. 1983;5:629-638. 3. Weinstein MP, Murphy JR, Reller LB, Lichtenstein KA. The clinical significance of positive blood cultures: a comprehensive analysis of 500 episodes of bacteremia and fungemia in adults, II: clinical observations, with special reference to factors influencing prognosis. Rev Infect Dis. 1983;5:54-70. 4. Ispahani P, Pearson NJ, Greenwood D. An analysis of community and hospitalacquired bacteraemia in a large teaching hospital in the United Kingdom. QJMed. 1987;63:427-440. 5. Pittet D, Wenzel RP. Nosocomial bloodstream infections: secular trends in rates, mortality, and contribution to total hospital deaths. Arch Intern Med. 1995; 155:1177-1184. 6. Leibovici L, Samra Z, Konigsberger H, Drucker M, Ashkenazi S, Pitlik SD. Longterm survival following bacteremia or fungemia. JAMA. 1995;274:807-812. 7. Leibovici L, Shraga I, Drucker M, Konigsberger H, Samra Z, Pitlik SD. The benefit of appropriate empirical antibiotic treatment in patients with bloodstream infection. J Intern Med. 1998;244:379-386. 8. Rayner BL, Willcox PA. Community-acquired bacteraemia: a prospective survey of 239 cases. Q J Med. 1988;69:907-919. 9. Elhanan G, Sarhat M, Raz R. Empiric antibiotic treatment and the misuse of culture results and antibiotic sensitivities in patients with community-acquired bacteraemia due to urinary tract infection. J Infect. 1997;35:283-288. 10. Du B, Long Y, Liu H, et al. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae bloodstream infection: risk factors and clinical outcome. Intensive Care Med. 2002;28:1718-1723. 11. Lodise TP, McKinnon PS, Swiderski L, Rybak MJ. Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis. 2003;36:1418-1423. 12. Setia U, Gross PA. Bacteremia in a community hospital: spectrum and mortality. Arch Intern Med. 1977;137:1698-1701. 13. Leibovici L, Konisberger H, Pitlik SD, Samra Z, Drucker M. Patients at risk for inappropriate antibiotic treatment of bacteraemia. J Intern Med. 1992;231: 371-374. 14. Salomao R, Castelo Flho A, Pignatari AC, Wey SB. Nosocomial and community acquired bacteremia: variables associated with outcomes. Rev Paul Med. 1993; 111:456-461. 15. Byl B, Clevenbergh P, Jacobs F, et al. Impact of infectious diseases specialists and microbiological data on the appropriateness of antimicrobial therapy for bacteremia. Clin Infect Dis. 1999;29:60-66. 16. Friedman ND, Korman TM, Fairley CK, Franklin JC, Spelman DW. Bacteremia due to Stenotrophomonas maltophilia: an analysis of 45 episodes. J Infect. 2002; 45:47-53. 17. Kang CI, Kim SH, Kim HB, et al. Pseudomonas aeruginosa bacteremia: risk factors for mortality and influence of delayed receipt of effective antimicrobial therapy on clinical outcome. Clin Infect Dis. 2003;37:745-751. 18. Kollef MH. Inadequate antimicrobial treatment: an important determinant of outcome for hospitalized patients. Clin Infect Dis. 2000;31(suppl 4):S131- S138. 19. Weinstein MP, Towns ML, Quartey SM, et al. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis. 1997;24:584-602. 20. Arbo MD, Snydman DR. Influence of blood culture results on antibiotic choice in the treatment of bacteremia. Arch Intern Med. 1994;154:2641-2645. 21. Chow JW, Fine MJ, Shlaes DM, et al. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann Intern Med. 1991; 115:585-590. 22. Ibrahim EH, Sherman G, Ward S, Fraser VJ, Kollef MH. The influence of inadequate antimicrobial treatment of bloodstream infections on patient outcomes in the ICU setting. Chest. 2000;118:146-155. 23. Morin CA, Hadler JL. Population-based incidence and characteristics of communityonset Staphylococcus aureus infections with bacteremia in 4 metropolitan Connecticut areas, 1998. J Infect Dis. 2001;184:1029-1034. 24. Friedman ND, Kaye KS, Stout JE, et al. Health care-associated bloodstream infections in adults: a reason to change the accepted definition of communityacquired infections. Ann Intern Med. 2002;137:791-797. 25. Siegman-Igra Y, Fourer B, Orni-Wasserlaug R, et al. Reappraisal of communityacquired bacteremia: a proposal of a new classification for the spectrum of acquisition of bacteremia. Clin Infect Dis. 2002;34:1431-1439. 26. Social Security Death Index. Available at: http://www.ancestry.com/search/ rectype /vital/ssdi/main.htm. Accessed December 13, 2001. 27. Mandell GL, Bennett JE, Dolin R, eds. Principles and Practice of Infectious Diseases. 4th ed. New York, NY: Churchill Livingstone; 1995. 28. Localio AR, Berlin JA, Ten Have TR, Kimmel SE. Adjustments for center in multicenter studies: an overview. Ann Intern Med. 2001;135:112-123. 313