The Impact of Physician Quality Measures on the Coding Process

Similar documents
September 2, Dear Administrator Tavenner:

Emergency Department Update 2009 Outpatient Payment System

Population and Sampling Specifications

Understanding Patient Choice Insights Patient Choice Insights Network

Appendix A WORK PROCESS SCHEDULE AND RELATED INSTRUCTION OUTLINE. Health Information Management (HIM) Professional Fee Coder Apprenticeship

Emergency Department Update 2010 Outpatient Payment System

2011 Melanoma Physician Quality Reporting (PQRS): FREQUENTLY ASKED QUESTIONS

Compliance Workplan for Physician Practices

Procedural andpr Diagnostic Coding. Copyright 2012 Delmar, Cengage Learning. All rights reserved.

PROFESSIONAL MEDICAL CODING AND BILLING WITH APPLIED PCS LEARNING OBJECTIVES

NEW JERSEY HOSPITAL PERFORMANCE REPORT 2014 DATA PUBLISHED 2016 TECHNICAL REPORT: METHODOLOGY RECOMMENDED CARE (PROCESS OF CARE) MEASURES

Proposed Standards Revisions Related to Pain Assessment and Management

Healthcare- Associated Infections in North Carolina

Value of the CDI Program Cindy Dennis, MHS, RHIT

Value of the CDI Program Cindy Dennis, MHS, RHIT

National Hospital Inpatient Quality Reporting Measures Specifications Manual

Hospital Outpatient Quality Reporting Back to the Basics: Critical Access Hospitals

Abstraction Tricks and Tips for the Hospital Outpatient Quality Reporting (OQR) Program

CMS Quality Initiatives: Past, Present, and Future

Abstraction Tricks and Tips for the Hospital Outpatient Quality Reporting (OQR) Program

Navicent Health Physician Group Risk-Based Payments: Assessment of Readiness and Performance for Multiple Reporting Requirements

A Unique Approach to Auditing the Primary Care Exception

A Unique Approach to Auditing the Primary Care Exception

04/03/2015. Quality Matters: How to Succeed with PQRS in A Short History of PQRS. Participate Or Else..

Meaningful Use Stage 2 Clinical Quality Measures Are You Ready?

Hospital Compare Quality Measures: 2008 National and Florida Results for Critical Access Hospitals

Quality Management Building Blocks

Scoring Methodology FALL 2016

NEW JERSEY HOSPITAL PERFORMANCE REPORT 2012 DATA PUBLISHED 2015 TECHNICAL REPORT: METHODOLOGY RECOMMENDED CARE (PROCESS OF CARE) MEASURES

DENOMINATOR: All final reports for patients, regardless of age, undergoing a CT procedure

Hospital Outpatient Quality Reporting Program

Taking the Mis Out of Mismatch: Top 10 Mismatched Data Elements from Q through Q April 17, 2013

NORTHWESTERN LAKE FOREST HOSPITAL. Scorecard updated May 2011

The Role of Analytics in the Development of a Successful Readmissions Program

RE-ADMITTING IN HOSPITALS: MODELS AND CHALLENGES. Murali Parthasarathy Dr. Paul Damien

Critical Access Hospital Quality Improvement Activities and Reporting on Quality Measures: Results of the 2007 National CAH Survey

Readmission Policy REIMBURSEMENT POLICY UB-04. Reimbursement Policy Oversight Committee

Tools for Providers. Clinical Care and Practice AdvancementElectronic Health Records (EHR)

Joint Replacement Outweighs Other Factors in Determining CMS Readmission Penalties

CAC: Understanding the Technology and Lessons Learned from Early Adopters and The Next Big Thing : Core Measures and Quality Reporting

Medicare P4P -- Medicare Quality Reporting, Incentive and Penalty Programs

2. What is the main similarity between quality assurance and quality improvement?

Payment Policy: Visits On Same Day As Surgery Reference Number: CC.PP.040 Product Types: ALL Effective Date: 03/01/2018

1 Title Improving Wellness and Care Management with an Electronic Health Record System

Outpatient Quality Reporting Program

AHA Survey on Hospitals Ability to Meet Meaningful Use Requirements of the Medicare and Medicaid Electronic Health Records Incentive Programs

Repricing Specialty Hospital Outpatient Services Using Ambulatory Surgery Center Prices

TELECOMMUNICATION SERVICES CSHCN SERVICES PROGRAM PROVIDER MANUAL

Understanding the Implications of Total Cost of Care in the Maryland Market

Diagnostic Coding. Psychomotor Domain. Affective Domain

ICD 10 CM State of Transition

Outpatient Quality Reporting Program

Coding and Payment Guide for Chiropractic Services. A comprehensive coding, billing, and reimbursement resource for chiropractic services

Total Cost of Care Technical Appendix April 2015

Technical Component (TC), Professional Component (PC/26), and Global Service Billing

EuroHOPE: Hospital performance

8/28/2014. Compliance and Practical Challenges When Using Scribes: Just What the Doctor Ordered? Objectives of the Presentation

Determining Like Hospitals for Benchmarking Paper #2778

Observation Coding and Billing Compliance Montana Hospital Association

Performance Scorecard 2013

California Medical Association

Program Summary. Understanding the Fiscal Year 2019 Hospital Value-Based Purchasing Program. Page 1 of 8 July Overview

Administrative Billing Data

Who, what, when, where and why did the Government get involved in Health Care Quality?

Toward the Electronic Patient Record:

Observation Care Evaluation and Management Codes Policy

Quality ID #137 (NQF 0650): Melanoma: Continuity of Care Recall System National Quality Strategy Domain: Communication and Care Coordination

Eligible Professional Core Measure Frequently Asked Questions

Hospital Outpatient Quality Reporting (OQR) Program Requirements: CY 2015 OPPS/ASC Final Rule

OASIS QUALITY IMPROVEMENT REPORTS

Hospital Outpatient Quality Measures. Kathy Wonderly RN, MSEd, CPHQ Consultant Developed: January, 2018

The Nature of Emergency Medicine

THE MEANING OF MEANINGFUL USE CHANGES IN THE STAGE 2 MU FINAL RULE. Angel L. Moore, MAEd, RHIA Eastern AHEC REC

I. Disclosure Requirements for Financial Relationships Between Hospitals and Physicians

NORTHWESTERN LAKE FOREST HOSPITAL. Scorecard updated September 2012

9/17/2018. Place of Service Type of Service Patient Status

Rural-Relevant Quality Measures for Critical Access Hospitals

Scoring Methodology SPRING 2018

INTERVENTIONAL RADIOLOGY-INTEGRATED SCOPE OF PRACTICE PGY-2 PGY-6

Tools and Resources: Staying Up-To-Date with the Medicare Physician Fee Schedule

LIFE SCIENCES CONTENT

Presenting Audit Results. How are your results received? 12/4/2013. Shannon DeConda, CPC, CPC I, CEMC, CMSCS, CPMA, CPMN, CMPM

SNOMED CT AND ICD-10-BE: TWO OF A KIND?

MEDICARE BENEFICIARY QUALITY IMPROVEMENT PROJECT (MBQIP)

Minnesota health care price transparency laws and rules

SNF REHOSPITALIZATIONS

Surgical Precision in Clinical Documentation Connects Patient Safety, Quality of Care, and Reimbursement

PATIENT SAFETY KNOWLEDGEBASE. How to prepare for a Survey

Medical Billing & Coding Certificate Program with Clinical Externship

CMS Issues 2018 Proposed Physician Fee Schedule: What Spine Surgeons Should Know

Operations Report January, Executive Summary

Jason C. Goldwater, MA, MPA Senior Director

3M Health Information Systems. A case study in coding compliance: Achieving accuracy and consistency

San Diego Beacon Community Collaborative. James Killeen, MD

Education & Training Plan. Medical Billing & Coding Certificate Program with Clinical Externship. Student Full Name:

Polling Question #1. Denials and CDI: A Recovery Auditor s Perspective

2009 Final Medicare Physician Fee Schedule (CMS-1403-FC) Rule Summary

Outpatient Hospital Facilities

Measuring Digital Maturity. John Rayner Regional Director 8 th June 2016 Amsterdam

Data Reporting In The CMS Physician Quality Reporting Initiative

Transcription:

The Impact of Physician Quality Measures on the Coding Process The Impact of Physician Quality Measures on the Coding Process by Mark Morsch, MS; Ronald Sheffer, Jr., MA; Susan Glass, RHIT, CCS-P; Carol Stoyla, CLA; and Sean Perry Abstract Physician coding and billing is undergoing a major change that has expanded the responsibility of coders. The change is taking the form of Centers for Medicare and Medicaid Services (CMS) quality measures that are part of the new Physician Quality Reporting Initiative (PQRI), the successor to the Physician Voluntary Reporting Program (PVRP). The PQRI is a voluntary reporting program that provides a financial incentive for physician participation in the form of a 1.5 percent bonus payment for covered Medicare physician fee schedule services. This paper presents an analysis of the impact of the PQRI on three aspects of the coding process: (1) the frequency of occurrence of PQRI reportable cases, (2) the performance of a computer-assisted coding (CAC) system to assist the quality measure coding process, and (3) measurement of the coding effort required per case. Why is the PQRI a major change for physician coding and billing? First, the mechanism for reporting the measures is the current claims processing system. The quality measures are reported using CPT (Current Procedural Terminology) category II codes either on CMS-1500 forms or electronic 837-P forms. Secondly, these measures can be complex, combining criteria from the patient demographics (gender and age), medical and surgical history, current and newly prescribed medications, diagnostic and laboratory tests, course of treatment, final diagnoses, content of documentation, and the timeline of events. Lastly, a single case may meet the criteria of zero, one, or more than one quality measures. Introduction In this paper we present an analysis of the impact of Physician Quality Reporting Initiative (PQRI) measures on the coding process for selected medical specialties. Using a large database of current physician notes, this impact is quantified by tabulating the frequency of occurrence for several quality measures in emergency medicine and radiology. Each quality measure has been analyzed for its typical case as well as the variations identifiable through special modifiers: 1P, 2P, 3P, and 8P. These modifiers indicate the reasons why the preferred protocol was not followed. We also present the test results of a computer-assisted coding (CAC) system based on natural language processing (NLP) that has been developed to assign the quality measure codes. The level of agreement is reported when comparing the CAC system output to the changes made by human coders. The percentage agreement is a gauge of the accuracy of the CAC system, although several factors come into play when analyzing the results, such as the coder learning curve for new guidelines, the voluntary nature of the program, and the data extrinsic to the CAC system that influence quality measure assignment.

Perspectives in Health Information Management, CAC Proceedings; Fall 2008 A third component of the impact of the PQRI on the coding process is the time required to document, collect, and codify the measures. In this study we report the timing data tracked during the coding process for cases with quality measures. These results are compared to similar cases coded prior to the implementation of the PQRI. This analysis quantifies the impact of the collection and coding of quality measures on the coder workload. Background The final revisions to the PQRI guidelines were published by the Centers for Medicare and Medicaid Services in mid-june 2007 for implementation beginning with date of service July 1, 2007. 1 The PQRI guidelines define 74 measures across multiple medical specialties. An individual physician working in a single specialty will typically report on a handful of measures that specifically apply to his or her medical specialty area. This paper includes an analysis of the emergency medicine and radiology specialty areas. The LifeCode engine 2 is the CAC technology used in this analysis to assist the quality measure coding process. In commercial use since 1998, LifeCode is an NLP-based computerized coding engine. To support the extraction of the PQRI measures, the LifeCode engine was enhanced to recognize and codify the data elements specified in the PQRI guidelines. Most of the measures are codified using CPT category II codes, which are five characters long, consisting of four digits followed by one alphabetic character. A total of nine measures are covered in this study: two measures applicable to radiology and seven measures applicable to emergency medicine. The seven emergency medicine measures were those developed with input from the American College of Emergency Physicians (ACEP). Table 1 lists the nine measures, their associated medical specialties, and the related CPT category II codes. Analysis The data for this study are from selected users of the LifeCode engine during a three-week period in July 2007. Users were selected based on the criteria of coding any of the nine PQRI measures for PQRIeligible claims during the designated time period. Users that did not code any of the PQRI codes during the month of July were not included in this study. The final data covered 2,632 radiology cases from 179 radiology facilities and 569 emergency medicine cases from 13 emergency medicine facilities. The statistics presented in the results section describe these data, along with productivity data from earlier months for purposes of comparison. Results The first subject of the analysis is the frequency of PQRI cases for emergency medicine and radiology. PQRI case percentage varies based upon the number of measures that apply to the medical specialty, the case mix of the facility, and the measures selected for reporting by the provider or facility. Figure 1 shows the PQRI case percentage for the 13 emergency medicine facilities. The average PQRI case percentage was 1.86 percent, with a low of 0.28 percent and a high of 6.78 percent. Figure 2 shows the PQRI case percentage for the 179 radiology facilities. The average PQRI case percentage was 0.40 percent, with a low of 0.01 percent and a high of 7.20 percent. These case percentage averages are consistent with the relative number of measures defined for emergency medicine versus radiology. The second aspect of the analysis is the accuracy of CAC technology in assigning the quality measure codes. Coders reviewed the output of the CAC system and made edits to the PQRI codes consistent with their individual judgment. The work was performed as part of routine production coding operations for each of the facilities. The CAC system stores the coding edits for each case, allowing a comparison between CAC output and the final codes assigned by the users.

The Impact of Physician Quality Measures on the Coding Process System accuracy is calculated using an agreement rate that is the percentage of final PQRI codes assigned by the coders that matched the codes produced by the CAC system. This is the same formula as a recall statistic. 3 Agreement rate was calculated two ways: (1) as the percentage of matching CPT category II codes and (2) as the percentage of matching CPT category II codes plus modifiers. Figure 3 shows the agreement rates for the emergency medicine facilities. Each facility is shown with a pair of statistics: the upper dark bar of each pair represents the agreement rate of CPT II codes plus modifiers and the lower light bar represents the agreement rate of CPT II codes. Overall, the agreement rate was 80.6 percent for CPT II codes plus modifiers and 89.0 percent for CPT II codes alone. The agreement rates for the radiology cases are shown in Figure 4. In this chart, the rates have been grouped into five levels, and the bars indicate the number of facilities that fall into each level of agreement rate. The dark-colored bars indicate the agreement rate for CPT II codes plus modifiers, and the light-colored bars represent the agreement rate of CPT II codes. For all radiology facilities in the study, the agreement rate was 61.9 percent for CPT II codes plus modifiers and 71.3 percent for CPT II codes alone. The third aspect of the study is measuring the effect of PQRI coding on coder productivity. The CAC system stores the amount of time a coder spends reviewing each case. Figure 5 shows the average time spent per case for the July cases as compared to the same types of cases over the previous three months. The lightest-colored bars are the PQRI cases. The time impact for the radiology cases is dramatic; the average time per case increased by 277 percent from 58 seconds to 220 seconds. The impact on emergency medicine cases was much less, with an increase of 13 percent over the previous three-month average, from 157 seconds to 177 seconds. Discussion Anecdotally, the feedback from users has been very positive concerning the performance of the CAC system for PQRI coding. It s important to consider several factors when interpreting these statistics. First, the PQRI program is voluntary, and providers have some options in selecting which measures to collect and report. This study measured changes but did not collect the reasons behind the changes. Changes made based on CAC system errors were not distinguishable from changes made based on other information, such as the choice not to report certain cases or the availability of supplemental documentation to the coder that was not available to the CAC system. This made it difficult to compute a level of precision for the CAC system and to quantify false positive results. Second, because it was early in the reporting period, some facilities were still deciding whether and to what extent to participate in the program. Coding policies and practices at individual facilities were evolving during the period. Lastly, many coders were still learning the guidelines, so it is natural to expect a lower level of human coder accuracy and consistency this early in the process. That said, we believe this study provides valuable information in regard to the effects of implementing the PQRI guidelines and how a CAC system performed during the initial implementation. Mark Morsch, MS, is the vice president of NLP and software engineering at A-Life Medical, Inc., in San Diego, CA. Ronald Sheffer, Jr., MA, is the manager of NLP development at A-Life Medical, Inc., in San Diego, CA. Susan R. Glass, RHIT, CCS-P, is a senior QA specialist at A-Life Medical, Inc., in San Diego, CA. Carol Stoyla, CLA, is the director of compliance, coding, and software QA at A-Life Medical, Inc., in San Diego, CA. Sean Perry is a research linguist at A-Life Medical, Inc., in San Diego, CA.

Perspectives in Health Information Management, CAC Proceedings; Fall 2008 Notes 1. Centers for Medicare and Medicaid Services. 2007 Physician Quality Reporting Initiative Specifications Document. Available at http://www.cms.hhs.gov/pqri/downloads/measure_specifications_061807.pdf 2. Heinze, Daniel, et al. LifeCode: A Deployed Application for Automated Medical Coding. AI Magazine 22, no. 2 (2001): 76 88. Available at http://www.alifemedical.com/documents/lifecodeaimagazine.pdf. 3. Wikipedia Foundation. Definitions of Recall and Precision. Available at http://en.wikipedia.org/wiki/recall_%28information_retrieval%29.

The Impact of Physician Quality Measures on the Coding Process Table 1 Selected PQRI Measures Measure Number Measure Name 10 Rad Stroke and Stroke Rehabilitation: Computed Tomography (CT) or Magnetic Resonance Imaging (MRI) Reports 11 Rad Stroke and Stroke Rehabilitation: Carotid Imaging Reports CPT II Codes 3110F, 3111F, 3112F 3100F 28 EM Aspirin at Arrival for Acute Myocardial Infarction (AMI) 4084F 54 EM Electrocardiogram Performed for Non-Traumatic Chest Pain 3120F 55 EM Electrocardiogram Performed for Syncope 3120F 56 EM Vital Signs for Community-Acquired Bacterial 2010F Pneumonia 57 EM Assessment of Oxygen Saturation for Community- 3028F Acquired Bacterial Pneumonia 58 EM Assessment of Mental Status for Community-Acquired 2014F Bacterial Pneumonia 59 EM Empiric Antibiotic for Community-Acquired Bacterial Pneumonia 4045F

PQRI Case Percentage Perspectives in Health Information Management, CAC Proceedings; Fall 2008 Figure 1 Emergency Medicine PQRI Case Frequency 8.00% 7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00% 0.00% ER1 ER2 ER3 ER4 ER5 ER6 ER7 ER8 ER9 ER10 ER11 ER12 ER13

IMG1 IMG7 IMG13 IMG19 IMG25 IMG31 IMG37 IMG43 IMG49 IMG55 IMG61 IMG67 IMG73 IMG79 IMG85 IMG91 IMG97 IMG103 IMG109 IMG115 IMG121 IMG127 IMG133 IMG139 IMG145 IMG151 IMG157 IMG163 IMG169 IMG175 PQRI Case Percentage The Impact of Physician Quality Measures on the Coding Process Figure 2 Radiology PQRI Case Frequency 8.00% 7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00% 0.00%

Perspectives in Health Information Management, CAC Proceedings; Fall 2008 Figure 3 Emergency Medicine Agreement Rates ER13 ER12 ER11 ER10 ER9 ER8 ER7 ER6 ER5 ER4 ER3 ER2 ER1 0.00% 20.00% 40.00% 60.00% 80.00% 100.00%

The Impact of Physician Quality Measures on the Coding Process Figure 4 Radiology Agreement Rates 80%-100% 60%-80% 40%-60% 20%-40% 0%-20% 0 20 40 60 80 100 120 Radiology Sites

Avg Seconds Per Case Perspectives in Health Information Management, CAC Proceedings; Fall 2008 Figure 5 Coder Productivity 250 200 150 100 April May June July 50 0 Radiology PQRI Emergency PQRI