The Johns Hopkins University Applied Physics Laboratory has provided solutions to national security and scientific challenges with

Similar documents
AMRDEC. Core Technical Competencies (CTC)

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Military Radar Applications

First Announcement/Call For Papers

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 10 R-1 Line #10

Exhibit R-2, RDT&E Budget Item Justification

WHICH KIND OF STEM PIONEER ARE YOU?

UNCLASSIFIED. UNCLASSIFIED Navy Page 1 of 7 R-1 Line #16

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 7 R-1 Line #9

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2013 OCO

Air Force Science & Technology Strategy ~~~ AJ~_...c:..\G.~~ Norton A. Schwartz General, USAF Chief of Staff. Secretary of the Air Force

Defense Support Program Celebrating 40 Years of Service

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2011 Total Estimate. FY 2011 OCO Estimate

Chapter 17: Foreign Policy and National Defense Section 2

Research and Development in the Physical, Engineering, and Life Sciences (Except Biotechnology)

Trusted Partner in guided weapons

Cybersecurity United States National Security Strategy President Barack Obama

GOOD MORNING I D LIKE TO UNDERSCORE THREE OF ITS KEY POINTS:

The Integral TNO Approach to NAVY R&D

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

Serving as specialists in cyber communications CRYPTOLOGY TECHNICIAN

UNCLASSIFIED. FY 2017 Base FY 2017 OCO

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Challenges of a New Capability-Based Defense Strategy: Transforming US Strategic Forces. J.D. Crouch II March 5, 2003

Unmanned Systems. Northrop Grumman Today Annual Conference

Prepared Remarks for the Honorable Richard V. Spencer Secretary of the Navy Defense Science Board Arlington, VA 01 November 2017

AGI Technology for EW and AD Dominance

STATEMENT OF. MICHAEL J. McCABE, REAR ADMIRAL, U.S. NAVY DIRECTOR, AIR WARFARE DIVISION BEFORE THE SEAPOWER SUBCOMMITTEE OF THE

F-16 Fighting Falcon The Most Technologically Advanced 4th Generation Fighter in the World

UNCLASSIFIED R-1 ITEM NOMENCLATURE

17 th ITEA Engineering Workshop: System-of-Systems in a 3rd Offset Environment: Way Forward

Prepared Remarks of the Honorable Ray Mabus Secretary of the Navy Purdue University 8 May 2014

UNCLASSIFIED FY 2008/2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2007 Exhibit R-2

MCPON visits NAWCTSD Orlando seeking innovative ideas

This Product Area Directorate encompasses the following core equities:

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

OPNAVINST D N96 23 Jan Subj: SHIP ANTISUBMARINE WARFARE READINESS AND EFFECTIVENESS MEASURING PROGRAM

Tactical Technology Office

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE F: Requirements Analysis and Maturation. FY 2011 Total Estimate. FY 2011 OCO Estimate

2018 Annual Missile Defense Small Business Programs Conference

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE N: ASW Systems Development

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit)

Edited extract from: Department of the Army Historical Summary, FY 1979 (Washington, D.C.: U.S. Army Center of Military History, 1982, pp

UNCLASSIFIED FY 2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2008 Exhibit R-2

Strong. Secure. Engaged: Canada s New Defence Policy

UNCLASSIFIED FY 2016 OCO. FY 2016 Base

To THE DEFENSE ACQUISITION WORKFORCE

UNCLASSIFIED FY 2008/2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2007 Exhibit R-2

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 16 R-1 Line #45

WEAPONS DEVELOPMENT AND INTEGRATION DIRECTORATE OVERVIEW SPACE AND MISSILE DEFENSE WORKING GROUP 22 SEPTEMBER 2016

SERIES 1300 DIRECTOR, DEFENSE RESEARCH AND ENGINEERING (DDR&E) DEFENSE RESEARCH AND ENGINEERING (NC )

UNCLASSIFIED FY 2016 OCO. FY 2016 Base

STATEMENT OF DR. STEPHEN YOUNGER DIRECTOR, DEFENSE THREAT REDUCTION AGENCY BEFORE THE SENATE ARMED SERVICES COMMITTEE

NSWCCD-SSES SSES COMMAND OVERVIEW. 12 June Patricia C. Woody Department Head Machinery Research and Engineering

Expeditionary Maneuver Warfare Department ONR Code 30 Dr. John Pazik Department Head

OSD RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit)

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE A: Landmine Warfare and Barrier Advanced Technology FY 2012 OCO

ARMY RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit)

INTRODUCTION. Chapter One

UNCLASSIFIED. R-1 Program Element (Number/Name) PE D8Z / Prompt Global Strike Capability Development. Prior Years FY 2013 FY 2014 FY 2015

October 18, Dear Chairmen Thornberry and McCain, and Ranking Members Smith and Reed,

The Satellite Missile Tracking (SATRACK) System: A Retrospective

Subj: ELECTRONIC WARFARE DATA AND REPROGRAMMABLE LIBRARY SUPPORT PROGRAM

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED FY 2016 OCO. FY 2016 Base

UNCLASSIFIED R-1 ITEM NOMENCLATURE

SSC Pacific is making its mark as

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2012 OCO

AVIONICS CYBER TEST AND EVALUATION

This block in the Interactive DA Framework is all about joint concepts. The primary reference document for joint operations concepts (or JOpsC) in

Introduction to missiles

AVW TECHNOLOGIES, INC.

The Verification for Mission Planning System

UNCLASSIFIED. R-1 Program Element (Number/Name) PE A / Landmine Warfare and Barrier Advanced Technology. Prior Years FY 2013 FY 2014 FY 2015

The Future of American Airpower Remarks by General David Goldfein Chief of Staff of the Air Force At the American Enterprise Institute

ARMY RDT&E BUDGET ITEM JUSTIFICATION (R-2 Exhibit)

STATEMENT J. MICHAEL GILMORE DIRECTOR, OPERATIONAL TEST AND EVALUATION OFFICE OF THE SECRETARY OF DEFENSE BEFORE THE SENATE ARMED SERVICES COMMITTEE

Fiscal Year 2017 President s Budget Request for the DoD Science & Technology Program April 12, 2016

UNCLASSIFIED R-1 ITEM NOMENCLATURE

Autonomous Systems: Challenges and Opportunities

Headquarters U.S. Air Force

05/14/2003. Science Committee, U.S. House of Representatives. Statement by Dr. Tony Tether

3 rd Annual Electromagnetic Spectrum Operations Summit

Beyond Phase II Conference RIF Overview

UNCLASSIFIED FY 2016 OCO. FY 2016 Base

NAVY AREA THEATER BALLISTIC MISSILE DEFENSE (NATBMD)

NATIONAL DEFENSE AUTHORIZATION ACT FOR FISCAL YEAR 2011 R E P O R T COMMITTEE ON ARMED SERVICES HOUSE OF REPRESENTATIVES H.R. 5136

Lessons in Innovation: The SSBN Tactical Control System Upgrade

Guest Editor s Introduction

DRAFT vea Target: 15 min, simultaneous translation Littoral OpTech East VADM Aucoin Keynote Address 1 Dec 2015 Grand Hotel Ichigaya

Ladies and gentlemen, it is a pleasure to once again six years for me now to

UNCLASSIFIED. FY 2017 Base FY 2017 OCO. Quantity of RDT&E Articles Program MDAP/MAIS Code: 493

Strategic Systems and Beyond: Guest Editor s Introduction

National Lab Roles and Responsibilities in the Precision Strike Enterprise

TESTING AND EVALUATION OF EMERGING SYSTEMS IN NONTRADITIONAL WARFARE (NTW)

RECORD VERSION STATEMENT BY DR. MIKE GRIFFIN UNDER SECRETARY OF DEFENSE FOR RESEARCH AND ENGINEERING BEFORE THE

ALLIANCE MARITIME STRATEGY

Advanced Technology Overview for the Huntsville Aerospace Marketing Association

U.S. Air Force Electronic Systems Center

Transcription:

What We Do at APL

Welcome to APL The Johns Hopkins University Applied Physics Laboratory has provided solutions to national security and scientific challenges with engineering, systems integration, research and development, and analysis for more than 70 years. APL is our nation s largest University Affiliated Research Center, with approximately 5,000 staff members and 600 ongoing sponsored research projects. Our scientists, engineers and analysts serve as trusted advisors and technical experts to the government, ensuring the reliability of complex technologies that safeguard our nation s security and advance the frontiers of space. We also maintain independent research and development programs that pioneer and explore emerging technologies and concepts to address future national priorities. A University Affiliated Research Center University Affiliated Research Centers are independent, nonprofit organizations that conduct essential research, development and systems engineering to support national security needs. The centers serve strategic national priorities, free from conflicts of interest or competition with commercial industry. Collaboration with leading research universities allows these organizations to provide the U.S. government with access to our nation s most highly skilled scientists, engineers and analysts to tackle vital national security and scientific challenges.

Research and Innovation Ensuring missile system performance Researching chemical and biomedical breakthroughs Defining cybersecurity Developing revolutionary prosthetics Developing advanced materials Designing missions to explore the solar system 1

Air and Missile Defense Our work focuses on ballistic missile defense, sensors and weapons, and integrated warfare systems. The spectrum of tasks includes the initial definition of critical needs and performing system requirements analysis, technology evaluation and experimentation, system developments and performance demonstrations, and testing and evaluation of major systems and elements with warfighters. I didn t expect the breadth of projects that I would be working on. On a really good day, I might be doing anything from assembling a sensor payload on a target vehicle in Hawaii, celebrating having helped diagnose missile control fin actuation issues with a Japanese test crew in Nagasaki, or just finally getting my simulation to compile and run correctly. Nathan, mechanical/aerospace engineer I work in a small team of about 10 people in a lab where we test an infrared missile-guidance system. I really enjoy being a part of a team because it gives me the opportunity to discuss my ideas with other people. Katie, electrical engineer In my current technical lead role, I could be working on detailed RF signature phenomenology one day and the next day coordinating a large-scale systems engineering project. One pleasantly unexpected thing is the amount of foreign travel that I ve done supporting multiple naval programs. The work has taken me to places abroad that I never thought I d have a chance to see. Jose, missile systems engineer 2

Mission Areas Civil Space We make critical contributions to the missions of our major sponsor, NASA, to meet the challenges of space science. We conduct research and space exploration, and we develop and apply space science, engineering and technology, including the production of one-of-a-kind spacecraft, instruments and subsystems. Civil Space provides leadership in developing innovative, cost-effective, end-to-end space missions. APL has designed, developed and launched 68 spacecraft and more than 150 space instruments. As a mission design engineer, I work with many different people on systems such as guidance and control, navigation, propulsion and mission operations. It s pretty cool to decide where a spacecraft will fly. It s a large responsibility, and sometimes does require playing with rockets, so I can officially say that I m a rocket scientist! Chris, aerospace engineer I love the hands-on nature of my job. I m responsible for testing the materials and systems that will protect a spacecraft that is going to the sun. My biggest challenge is that no one has ever done this before, so there is no obvious path to follow. Betsy, mechanical engineer I love my work because each day brings the possibility of new discovery. I m the Mission Operations Manager for NASA s New Horizons spacecraft, on a 10-year journey to Pluto- Charon. My job is primarily to keep the spacecraft and its scientific payload safe and healthy so that it can return many scientific measurements and pictures. I m amazed at how many people are interested in space exploration; we receive encouragement from people all over the world. Alice, physicist 3

Cyber Operations This mission area focuses on four areas of operations: the global information network, information assurance, intelligence systems and information operations. We create technology, tools, techniques and system concepts and work closely with our sponsors to ensure their objectives are met. A large part of our work is helping the country find bad guys before they do bad things. We re like detectives, working to put together the puzzle pieces of information that exist so we can identify our adversaries before they strike. Jackie, mathematician My job is to assess the vulnerabilities of wireless communication systems to provide solutions that protect our systems or interfere with possible adversary systems. What I love about my job is that my contributions may be critical for the safety of others and that the challenges I face take me out of my comfort zone to explore new areas and state-of-the-art technologies. Manuel, electrical engineer I discover how enemies can steal the information we send across the Internet, corrupt the files we store on our computers, and disable our access to websites. Then I develop mechanisms to protect computer files and communications from cyber attacks. Shelby, cybersecurity engineer 4

Mission Areas Homeland Protection We focus on rapidly adapting to changing threats by developing technologies and enhanced capabilities. APL is helping provide end-users with the tools needed to detect and prevent terrorist attacks, means of terrorism and other illegal activities. Our work is sponsored by government agencies that are responsible for defending our homeland and territorial waters. We also support the operations of our armed special forces in their efforts to combat the threat from autonomous, decentralized terrorist groups. What s exciting about APL is that you have the opportunity to take a core set of skills and make important contributions to a broad range of challenges. For me that has included working on spacecraft flight dynamics, developing active sonar systems for the Navy, and helping the Department of Defense enhance situational awareness through the use of mobile devices. Aaron, systems/software engineer Working on APL s Homeland Protection programs lets me use my multidisciplinary background in photochemistry and cancer research in a meaningful way. Focusing on transportation security, I m applying my experience in a way that impacts the day-to-day lives of everyone in this country who uses transportation. David, chemist I love my work it s very intriguing and gratifying at the same time. It s a great feeling to know that your work and the work of others helps to protect the nation your family, your neighbors, your friends against chemical and biological threats. Kathlyn, immunologist 5

National Security Analysis The National Security Analysis Mission Area provides multimission assessments for naval, joint and Office of the Secretary of Defense sponsors on a wide range of emerging or evolving national security issues. Analyses conducted by staff members in this mission area provide strategic insights that help guide other APL mission areas, as well as sponsored research programs. I perform operational test and evaluation of new technology projects for the Department of Defense. I enjoy working with military personnel, government and industry organizations to ensure our military has the best capabilities available. There s great satisfaction in planning a challenging, operationally realistic test event that is well executed and results in satisfactory system performance. Will, combat systems analyst/project manager My job satisfaction comes from seeing an idea or concept evolve into something real. I help to generate requirements for new models that will help the Navy conduct analysis for future investment decisions. I also do operations research and analysis, which requires a lot of math and modeling. Trena, systems engineer My best days at work are those where I make an impact on the lives of others. My job allows me to provide analytical support to military health care leaders and patient care providers, enabling them to make more informed decisions. We have a unique opportunity in the Department of Defense to effect large-scale change in health care operations and care delivery. Kara, biologist/public health 6

Mission Areas National Security Space We focus on space solutions to critical national security challenges. We develop and conduct innovative experimental missions, build space instruments and produce new applications to meet warfighter needs. We offer innovative engineering, advanced technology development and a deep-rooted systems engineering culture. As part of a Department of Defense-sponsor-based organization, our National Security Space work also benefits from synergy with other APL mission areas. I m a project manager working on space environment and space situational awareness types of tasks. What I like most about my job is the ability to collaborate with a diverse set of scientists and engineers who are able to tackle complex but extremely important problems. Working at APL has given me the opportunity to apply my education to a completely new set of problems, ranging from academic space weather to national security space topics. I learn new things every day. Erin, space scientist I m part of the management team for National Security Space programs at APL. One of the most interesting aspects of my job is the opportunity to interact with interdisciplinary teams, where each individual has deep expertise in a particular area, working together to come up with creative solutions to complex problems. This is the essence of systems engineering. Dave, mathematician Working in research and development at APL has afforded me the opportunity to work on a great variety of projects, from developing algorithms for Earth-orbiting satellites to testing hardware for a mission to the outer solar system. No two days are ever the same there s always a new problem awaiting a creative solution. Kristin, applied physicist 7

Precision Strike We provide high-quality technical leadership and problem resolution in the conception, design, development, integration and employment of detection and targeting, command and control, and engagement capabilities used for the projection of military effects appropriate to furthering national goals. Our efforts also include tactical aircraft, ship and submarine programs, and development of better technologies for tactical surveillance and targeting. My work is exciting and challenging, and to know that it has direct impact and relevance to the government is very rewarding. A really good day would entail conducting a complex computational-fluid-dynamics simulation to answer a critical question for a sponsor. What has surprised me is the diversity and range of tasks in which I have been involved. Ashish, aerospace engineer I develop autopilot and guidance routines that allow air vehicles to fly by themselves. One week I may be sitting at my desk developing a high-fidelity missile simulation, while the next I may be standing in the middle of a desert demonstrating novel swarm algorithms. I never know what I will be challenged with next in my job, and I love that. Jeff, guidance and control engineer 8

Mission Areas Research and Exploratory Development The Research and Exploratory Development Mission Area merges science, technology and systems engineering to provide highly innovative, affordable and timely solutions to critical national challenges. We serve as a portal to technological expertise, supporting both government sponsors and other APL mission areas in cross-enterprise initiatives. We have expertise in multiple technical disciplines, solid systems engineering, and rapid prototyping and integration. As a crash, blast and ballistic biomechanical engineer, my work focuses on the study of injury: both how humans are injured and how to best prevent that injury from happening under similar circumstances. I also study impacts from ballistic rounds, explosions, helicopter crashes and other extreme-loading conditions. Kyle, mechanical engineer My work primarily involves the design, fabrication, modeling and control of first-generation electromechanical hardware for a variety of applications ranging from computer-aided surgery to defense. My favorite days are those when all parts of a system are fully fabricated and we get to do our first fit-check and assembly of a design. That moment when everything clicks is just awesome! Mike, mechanical engineer/roboticist I work in experimental biomechanics, developing and testing human surrogate torso models and systems that allow us to investigate the effects that blasts have on the human body. The instrumented human torso lets us evaluate the ability of body armor to protect soldiers against blast and ballistic impacts. Alexis, biomedical engineer 9

Sea Control We support U.S. Navy and joint service missions, with the focus on the systems and technologies to defeat undersea threats and to project military power through effective undersea warfare operations. Our staff represents a broad set of skills and capabilities, from science and engineering to operations analysis. We possess expertise in submarine detection systems and the ability to build and test undersea prototype systems. We are a major test organization, conducting extensive, complex research and development operations at sea. Coming out of college, I expected to do mechanical design of some sort, but my career took me to systems engineering where you get to take all the designed parts, put them together and make them work. As a project manager now, I m doing budgets and schedules too, plus supervising. I like getting to see the big picture. Toni, mechanical engineer APL tends to have strong operational knowledge of systems and their use by the warfighters. This knowledge helps to focus our work on providing systems and solutions that are relevant and address important operational problems. Lisa, electrical engineer The beauty of APL is that we have such a broad range of technical abilities and expertise, as well as fabrication facilities. On any given day, I can be involved in the whole spectrum of engineering tasks, from 3-D modeling to drawings, finite element analysis, hardware assembly or rapid prototyping. The projects range from air to ground to sea and even to space. There s always a challenge to keep you on your toes. Richard, mechanical engineer 10

Mission Areas Special Operations The Special Operations Mission Area was established in recognition of the increasingly important role that special operations play in the administration of our nation s foreign policy. The mission area s goal is to create and enable asymmetric capabilities for this community by providing objective technical direction and timely, cost-effective technology solutions. I always tell people that working at APL is like stepping into a Popular Science-type magazine. That cool, new technology everyone is fascinated with we normally have already studied it months, sometimes years, in advance. Dealing with these technologies so far in advance only challenges us to look further into the future and ask, What s next? Liam, electrical engineer Having started at APL fresh out of college and working in the Materials Analysis Lab, my current position the lead systems engineer for an intelligence, surveillance and reconnaissance system was not anything I would have considered for myself, but APL provided me with the opportunity and the experience. Jonathan, mechanical engineer My job at APL is to help our sponsors find new and better ways of gathering optical information from far away. I work with a multidisciplinary team to incorporate new imaging technology to do everything from greenhouse gas monitoring to biometric signature gathering. Alison, electro-optics engineer 11

Strategic Deterrence APL has made vital contributions to the U.S. Navy s Fleet Ballistic Missile system program for more than 50 years. We are rising to the challenge of redefining strategic systems from the legacy nuclear mission to a broad set of responses to current and future national security challenges. Our mission area demonstrates unequaled expertise in system development, testing and evaluation, and we are applying that knowledge to the newly expanded roles of strategic systems in the Department of Defense. I ve been exposed to some really cool modeling and simulation projects. Our work requires everything from the physics-based code concepts that drive the back end of simulations to the beautifully rendered 3-D front-end models and animation for the user interface. Each project is a unique undertaking with specific sponsor-driven requirements and therefore different analytical approaches, both of which provide opportunities to learn and try new things. I love watching it all come together and being a part of it all. Danielle, physicist I m a navigation subsystem analyst for the Navy s ballistic missile submarines. Because submarines operate under water, they can t use GPS continually to back up their inertial navigators. I look at the performance of the various types of navigation equipment aboard the sub to see that the system is operating well, and I help evaluate the root causes of any problems. Karen, systems analyst I help determine the accuracy and reliability of the U.S. Navy s Trident II System by analyzing a specific subsystem of the total weapon-system delivery method. I also lead the integration of new error models into our statistical analysis software to maintain our capability to evaluate this subsystem through future upgrades. Kunal, applied physicist/software engineer 12

Applied Expertise Systems Missile Combat Spacecraft Communications Surveillance Radar Command and Control Information Display Technologies Electronics Information Processing Navigation Guidance Propulsion Aerodynamics Oceanography Space Physics Sonar Software Development Signal Processing Materials Biomedicine Mission Support Precision Engagement Ship Defense Strategic Deterrence Tactical and Ballistic Missile Defense Electronic Warfare Littoral Warfare Surveillance Antisubmarine Warfare Special Operations Cybersecurity Rapid Prototyping Intelligence, Surveillance and Reconnaissance Technologies Field Offices Crystal City 2461 S. Clark Street Suite 1200 Arlington, VA 22202 Fairfax Fair Oaks Plaza 11350 Random Hills Road Suite 620 Fairfax, VA 22030 Huntsville 150 West Park Loop Suite 308 Huntsville, AL 35806 Lexington Park 46579 Expedition Drive Suite 300 Lexington Park, MD 20653 Los Angeles Continental Grand Plaza 400 Continental Blvd. Suite 6066 El Segundo, CA 90245 Norfolk 5700 Lake Wright Drive Twin Oaks Building 1 Suite 405 Norfolk, VA 23502

To Frederick APL is located midway between Washington and Baltimore, with convenient access to major highways and local attractions. See our Visitor s Guide for more details. 70 29 32 Columbia JHU/APL Laurel 95 695 Baltimore 695 Baltimore/Washington International Thurgood Marshall Airport 29 32 Silver Spring N 495 Reagan National Airport Wash., DC 495 For more information, contact: or visit us on the web at: The Johns Hopkins University Applied Physics Laboratory is an equal opportunity/affirmative action employer that complies with Title IX of the Education Amendments Act of 1972, as well as other applicable laws, and values diversity in its workforce. 14-01653 07.14