Missile Mathematical Model and System Design

Similar documents
System Engineering. Missile Design and. Eugene L Fleeman. Lilburn, Georgia AIM EDUCATION SERIES. Joseph A. Schetz, Editor-in-Chief

Stability Analysis of Autopilot Systems For Ballistic Missile Using MATLAB

Keywords. Guided missiles, Classification of guided missiles, Subsystems of guided missiles

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 10 R-1 Line #10

AMRDEC. Core Technical Competencies (CTC)

Introduction to missiles

Missile Guidance and Control Systems

Ballistic Missile Defense Guidance and Control Issues

Trusted Partner in guided weapons

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2011 Total Estimate. FY 2011 OCO Estimate

MDTS 5705 : Guidance Lecture 1 : Guidance System Requirements. Gerard Leng, MDTS, NUS

First Announcement/Call For Papers

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2012 OCO

SM Agent Technology For Human Operator Modelling

GUI_missileFlyout v2.01: User s Guide

STORE SEPARATION TRAJECTORY SIMULATION FOR THE HIGH SPEED ANTI-RADIATION DEMONSTRATOR (HSAD) FROM THE F-4 AIRCRAFT

Advanced Missile Aerodynamics

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE D8Z: Central Test and Evaluation Investment Program (CTEIP) FY 2013 OCO

Exhibit R-2, RDT&E Budget Item Justification

NATIONAL TRANSPORTATION SAFETY BOARD WASHINGTON, D.C. MISSILE SELF DESTRUCT PERFORMANCE STUDY

AIM-54 Simulation. 1 st July By Tom Tyrell Márton Nagy. Heatblur Simulations

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Department of Aerospace Engineering ROCKET COMPETITION SPOT LANDING

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE F: Major T&E Investment. FY 2011 Total Estimate. FY 2011 OCO Estimate

Request for Solutions: Distributed Live Virtual Constructive (dlvc) Prototype

This Protocol is organized into ten Parts.

Request for Proposal Close Air Support Aircraft (A-10 Replacement)

MOTORS CORPORATION MILWAUKEE. WISCONSIN Currently building the spacecraft guidance and navigation systems for

Integration of guidance and fuze of directional warhead missile

What future for the European combat aircraft industry?

Technical Supplement For Joint Standard Instrumentation Suite Missile Attitude Subsystem (JMAS) Version 1.0

ICBM MODERNIZATION PROGRAM ANNUAL PROGRESS REPORT TO THE COMMITTEES ON ARMED SERVICES OF THE SENATE AND HOUSE OF REPRESENTATIVES

30 th Congress of the International Council of the Aeronautical Sciences CALL FOR PAPERS. Hosted by

High Velocity Penetrating Weapon Program Overview

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 16 R-1 Line #45

NEW THREAT UPGRADE PROGRAM

ARCHIVED REPORT. AGM-45 Shrike - Archived 10/2001

WEAPONS DEVELOPMENT AND INTEGRATION DIRECTORATE OVERVIEW SPACE AND MISSILE DEFENSE WORKING GROUP 22 SEPTEMBER 2016

SCIENCE & TECHNOLOGY ENABLING ARMAMENTS ACQUISITION MODERNIZATION

Request for Proposal Design of Non-Circular Fuselage with Aft-Mounted Engines

Russian defense industrial complex s possibilities for development of advanced BMD weapon systems

Fundamentals of Electro-Optics and Infrared Sensors

The Verification for Mission Planning System

ARMY RDT&E BUDGET ITEM JUSTIFICATION (R-2 Exhibit)

Analysis of Precision Mortar fires for the IBCT

New Artillery Sunday Punch

Test By Trial. The unique 46th Test Group tries out a wide range of weapons systems over the white sands of southern New Mexico.

DATA ITEM DESCRIPTION

The UAH Space Hardware Club Sounding Rocket Program

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

ARCHIVED REPORT. For data and forecasts on current programs please visit or call

UNCLASSIFIED. UNCLASSIFIED Navy Page 1 of 7 R-1 Line #16

UNCLASSIFIED R-1 ITEM NOMENCLATURE

UNCLASSIFIED. R-1 Program Element (Number/Name) PE D8Z / Prompt Global Strike Capability Development. Prior Years FY 2013 FY 2014 FY 2015

UNCLASSIFIED. R-1 Program Element (Number/Name) PE A / Landmine Warfare and Barrier Advanced Technology. Prior Years FY 2013 FY 2014 FY 2015

SPS-TA THALES AIRBORNE SYSTEMS INTEGRATED SELF-PROTECTION SYSTEM FOR TRANSPORT AND WIDE-BODY AIRCRAFT.

Flight Controlled Mortar FCMortar

UNCLASSIFIED R-1 ITEM NOMENCLATURE

Banning Ballistic Missiles? Missile Control for a Nuclear-Weapon-Free World

A METHOD OF RISK ANALYSIS AND THREAT MANAGEMENT USING ANALYTIC HIERARCHY PROCESS: AN APPLICATION TO AIR DEFENSE

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

mm*. «Stag GAO BALLISTIC MISSILE DEFENSE Information on Theater High Altitude Area Defense (THAAD) and Other Theater Missile Defense Systems 1150%

Detect, Deny, Disrupt, Degrade and Evade Lethal Threats. Advanced Survivability Suite Solutions for Mission Success

Aerial Targets & Unmanned Aviation

UNCLASSIFIED R-1 ITEM NOMENCLATURE

STATEMENT OF. MICHAEL J. McCABE, REAR ADMIRAL, U.S. NAVY DIRECTOR, AIR WARFARE DIVISION BEFORE THE SEAPOWER SUBCOMMITTEE OF THE

Precision Strike Winter Roundtable

2018 Annual Missile Defense Small Business Programs Conference

Science, Technology, and Attack Tactics Relevant to National Missile Defense Systems

Military Radar Applications

M-346 ITS ETTS and LVC filling the gap towards New Generation Combat Aircraft Training

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

COMMON AVIATION COMMAND AND CONTROL SYSTEM

Briefing for Industry

Request for Proposal Robotic Lunar Crater Resource Prospecting

Subj: ELECTRONIC WARFARE DATA AND REPROGRAMMABLE LIBRARY SUPPORT PROGRAM

NAVAHO SUPERSONIC "PILOTLESS BOMBER": U.S. SPACE TECHNOLOGY INCUBATOR

UNCLASSIFIED. FY 2017 Base FY 2017 OCO

Department of Defense DIRECTIVE. SUBJECT: Electronic Warfare (EW) and Command and Control Warfare (C2W) Countermeasures

Standard Missile: Snapshots in Time Captured by Previous Johns Hopkins APL Technical Digest Articles

OSD RDT&E BUDGET ITEM JUSTIFICATION (R2 Exhibit)

Theater Ballistic Missile Defense Analyses

Edited extract from: Department of the Army Historical Summary, FY 1982 (Washington, D.C.: U.S. Army Center of Military History, 1988, pp

Defense Technical Information Center Compilation Part Notice

UNCLASSIFIED R-1 ITEM NOMENCLATURE

Fire Control Systems.

UNCLASSIFIED R-1 ITEM NOMENCLATURE

C4I System Solutions.

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

Development and Fielding of the Excalibur XM982 Warhead

UNCLASSIFIED. FY 2017 Base FY 2017 OCO

Army Ground-Based Sense and Avoid for Unmanned Aircraft

LOCKHEED MARTIN MISSILES AND FIRE CONTROL OVERVIEW CLEARED FOR PUBLIC RELEASE PIRA DAL

PH: (757) FX: (208) diamond springs rd Suite B Virginia beach, VA 23455

Test and Evaluation of Avionics and Weapons Systems

ELECTRICAL TECHNICIAN I/II/III

Exhibit R-2, RDT&E Budget Item Justification

UNCLASSIFIED. R-1 ITEM NOMENCLATURE PE A: Landmine Warfare and Barrier Advanced Technology FY 2012 OCO

udit Hjport /jöjroo - ös - OVO Office of the Inspector General Department of Defense ACQUISITION MANAGEMENT OF THE COMANCHE PROGRAM

Advanced Capability Extended Range Mortar (ACERM) 2015 NDIA Armament Systems Forum

Transcription:

AARMS Vol. 16, No. 1 (2017) 29 35. Missile Mathematical Model and System Design István PAPP 1 Recently, aerospace (flight) engineers, having more solid mathematical backgrounds, have become familiar with the newest results in control theory and are able not only to formulate control problems but also solve them without attracting the attention of control experts. Moreover, they try to apply new results in control theory to specific aerospace and missile guidance problems. As a result, control theory is losing its biggest supplier and, to a certain degree, this slows down its progress. [1] [2] Keywords: mathematical, control, missile, equations of motion Introduction In general, a missile can be defined as an aerospace vehicle with varying guidance capabilities that is self-propelled through space for the purpose of inflicting damage on a designated target. These vehicles are fabricated for air-to-air, surface-to-air, or surface-to-surface roles. They contain a propulsion system, warhead section, guidance systems, and control surfaces, although hypervelocity missiles do not use warheads or control surfaces. The guidance capabilities of the different missiles vary from self-guided to complete dependence on the launch equipment for guidance signals. [2] [3] The Missile Mathematical Model Firstly, we need to define the concept of missile: a missile is defined as a space-traversing unmanned vehicle that contains the means for controlling its flight path. The guided tactical missiles are sometimes referred to according to their air speed relative to the speed of sound and their type of propulsion system. Generally, the highest rate of airspeed that can be reached safely and still ensure correct operation is considered as that missile s classification. [1] The four general categories of guided missiles are: surface-to-surface; surface-to-air; air-to-surface; air-to-air. [1] In essence, the general means of classification of a missile s airspeed is related to the speed of sound (or Mach 1), which varies with respect to the ambient temperature. Commonly, there are four groups that are considered in classifying a missile. These: subsonic: airspeeds less than Mach 1; sonic: airspeeds equal to Mach 1; supersonic: airspeeds ranging between Mach 1 and Mach 5; hypersonic: airspeeds exceeding Mach 5. [1] [3] 1 National University of Public Service, assistant lecturer; e-mail: pappi@uni-nke.hu, ORCID ID: orcid.org/0000-0002-2929-5864 29

Table 1. Comparison of Weapon System Characteristics. [1: 92] Feature Sparrow-type weapon Bank-to-turn weapon Guidance Mode Skid-to-Turn Bank-to-Turn Control Surfaces Wing Control Tail Control Autopilot Sensors Accelerometers Accelerometer Maximum Acceleration 45g s (32 g s per axis) 100 g s in pitch, 10 g s in yaw Guidance Delay 0.75 sec 0.40 sec Launch Speed 0.5 2.0 Mach 0.5 2.0 Mach Speed Range 0.5 3.0 Mach 0.5 4.0 Mach Maximum Roll Rate Not Applicable ±600 /sec Especially the pitch/yaw plane rotational responses behave like a spring mass damper system. Mathematically, this system reaction can be expressed in the form + 2 + = ( ) (1) Equation (1) can also be written in the usual frequency domain as follows: ( )/ ( ) = / ( + 2 + ) (2) In the above equations, the notations are: y(s) output, u(s) input, ζ damping ratio, ω frequency (rad/sec), s Laplace operator (rad/sec). The above continuous system can be constructed in a simulation as a feedback network that represents a load factor command system in pitch/yaw planes. Figure 1 represents a typical pitch/yaw network. [1] [4] [6] Figure 1. Pitch-yaw feedback network. [1: 93] 30 AARMS (16) 1 (2017)

Assume for simplicity that the missile s motion is constrained in the vertical plane. Furthermore, we will assume that the missile can be illustrated as a point mass. Therefore, from the missile s balanced forces shown in the diagram below, we can write the equations of motion as follows. Figure 2. Missile balanced forces. [1: 98] Based on Figure 2, we can write the following equations of motion: = (1/ )[ cos ] sin = (1/ )[ + sin ] ( / ) cos = cos = sin (3) (4) (5) (6) Aerodynamic Derivative Coefficients: = = (7) (8) = ( ) (9) = + (10) where: g acceleration of gravity, h altitude, k induced drag coefficient, AARMS (16) 1 (2017) 31

m mass, D drag, L lift, M Mach number, S reference area, T thrust, V velocity, C D, C L drag and lift coefficients, C D0 zero-lift drag coefficient, C Lα C L / α. [1] [5] [9] System Design Specifically, the guided missile is typically divided into four subsystems: the airframe; guidance; motor (or propulsion); warhead. Firstly, the type and size of airframe is strongly dependent on guidance characteristics, motor size, and warhead size. Secondly, the type of guidance that can be used is also dependent on the motor, warhead, and threat. More specifically, the type of guidance chosen is dependent on the overall weapon system in which the missile will be used, on the type of threat the missile will be used against, the characteristics of the threat target, and other factors. Guidance, as we have seen earlier, is the means by which a missile steers or is steered to a target. The next category is the motor, which characteristics are dependent on guidance requirements, the threat, and the airframe characteristics. Finally, the warhead is dependent on the threat and type of guidance. Commonly, the procedure is to size the guidance requirements (e.g., accuracy, response time, range capability) from the threat, select an airframe that can deliver the required aerodynamic performance, size the motor based on threat and airframe considerations, and size the warhead according to guidance and airframe considerations. [1] [2] [5] Figure 3 we can see an air-to-air missile s general construction. Figure 3. Air-to-air missile main parts. [Edited by the author based on source 7.] 32 AARMS (16) 1 (2017)

In addition to the above considerations, there are other basic factors that affect the design of any weapon system. These are: the threat; the operating environment; cost; state of the art. Typically, the threat and operating environment are known or are given. Also, the state of the art is known. Therefore, the design effort of any missile centres on meeting the threat in the environment with the state of the art, at minimum cost. Consequently, three of these four factors are specified, with the fourth being either minimized (i.e., cost, state of the art) or maximized. [1] [2] Figure 4 illustrates the above missile characteristics for an aerodynamic air-to-air missile. Figure 4. Basic missile construction. [1: 86] In the development of the missile systems, a broad spectrum of engineering disciplines is employed with primary emphasis placed on the guidance and control subsystems. A comprehensive systems-oriented approach is applied throughout the system development. There are four basic phases in the development of a missile. Which are: concept formulation and/or definition; requirements; design; evaluation. In diagram form, these four phases are shown in Figure 5. Therefore, the missile system development cycle commences with the concept formulation, where one or more guidance methods are postulated and examined for feasibility and compatibility with the total system objectives and constraints. Surviving candidates are compared quantitatively and a baseline concept adopted. [1] [3] [5] AARMS (16) 1 (2017) 33

Figure 5. Missile development phases. [1: 89] Conclusion We can say that the process of guidance is based on the position and the velocity of the target relative to the guided object. The participants in the guidance process are also referred to in the literature as the evader and the pursuer, respectively. Most of the applications for the theory of guidance are in weaponry. The very fast progress of guided weaponry in the past fifty years would not be possible without advances in many technologies. One should mention internal combustion engines, rocket motors, inertial instrumentation (especially gyroscopes), aeronautics, electronics (especially microelectronics and radar), electro-optics, and computer engineering. [1] [6] [8] References [1] SIOURIS, G. M.: Missile Guidance and Control Systems. New York: Springer, 2003. http:// cdn.preterhuman.net/texts/terrorism_and_pyrotechnics/rocketry/missiles_and_warheads/ Missile%20Guidance%20&%20Control%20Systems.pdf (Downloaded: 15 07 2015) [2] YANUSHEVSKY, R.: Modern Missile Guidance. Boca Raton: CRC Press, Taylor & Francis Group LLC., 2008. [3] BALL, R. E.: The Fundamentals of Aircraft Combat Survivability Analysis and Design. Virginia: Virginia Polytechnic Institute and State University Blacksburg, 1985. [4] PALUMBO, N. F., BLAUWKAMP, R. A., LLOYD, J. M.: Modern Homing Missile Guidance Theory and Techniques. Johns Hopkins APL Technical Digest, 29 1 (2010), 42 59. [5] LIN, C. M., HSU, C. F., CHANG, S. K., WAI, R. J.: Guidance: Law Evaluation for Missile Guidance Systems. Asian Journal of Control, 2 4 (2000), 243 250. [6] SHNEYDOR, N. A.: Missile Guidance and Pursuit: Kinematics, Dynamics and Control. Chichester: Horwood Publishing Chichester, 1998. 34 AARMS (16) 1 (2017)

[7] Scimitar Missiles, USS Sanctuary. Obsidian Portal. https://uss-sanctuary.obsidianportal.com/ wiki_pages/scimitar-missiles (Downloaded: 20 03 2016) [8] PAPP I.: Rakétahajtóművek üzemeltetésének biztonsági megoldásai. Repüléstudományi Közlemények, XXIV 2 (2012), 616 621. [9] PAPP I., SZILVÁSSY L, ÓVÁRI Gy.: Derivation of the Fundamental Missile Guidance Equations. AARMS, 14 4 (2015), 341 348. AARMS (16) 1 (2017) 35