Star Crossed BY BRUCE M. DEBLOIS, RICHARD L. GARWIN, R. SCOTT KEMP & JEREMY C. MARWELL. March 2005 IEEE Spectrum INT 3

Size: px
Start display at page:

Download "Star Crossed BY BRUCE M. DEBLOIS, RICHARD L. GARWIN, R. SCOTT KEMP & JEREMY C. MARWELL. March 2005 IEEE Spectrum INT 3"

Transcription

1 Star Crossed FROM ORBITING LASERS TO MICROSATELLITE MINES TO HEAVY METAL RODS THAT STRIKE FROM THE HEAVENS, THE POTENTIAL TO WAGE WAR FROM SPACE RAISES STARTLING POSSIBILITIES AND SERIOUS PROBLEMS BY BRUCE M. DEBLOIS, RICHARD L. GARWIN, R. SCOTT KEMP & JEREMY C. MARWELL March 2005 IEEE Spectrum INT 3

2 The world awakens to an international 12 June 2018crisis: officials at the Tokyo airport have detained a foreign airliner suspected of carrying illegal arms. The aggressive and threatening response from the plane s country of origin, a rogue Asian state believed to possess both nuclear and biological weapons, adds credibility to the suspicion. Hamstrung by its rogue status, the aggressor country s economy has been in free fall for decades, and with this latest incident, it s widely feared that the country will launch a nuclear attack against Japan. U.S. satellites report escalating activity at the country s rocket-launch facility; other U.S. intelligence indicates that three intermediate-range missiles are being fueled and are within a 15-minute launch window. No air-, sea-, or land-based military system is available to respond. The U.S. president demands that the country cease and desist immediately, but receives no response. Five minutes later, the U.S. Strategic Command activates a heretofore undisclosed space-based laser; within minutes, it incinerates the launch facility s command and control center, thus narrowly averting a catastrophe. Today, such a scenario is pure science fiction, but it or something like it could become reality within the next decade or two. The irony is that the economic and political price the United States would have to pay to bring about such a system, even if it could be done, might well outweigh its obvious strategic advantage. No country today is known to have weapons deployed in space, and many countries oppose their development. However, at least some U.S. Pentagon officials have been arguing that the United States must now, after decades of debate, develop and deploy offensive space weapons. In fact, over the past 10 years, the U.S. government has spent billions of dollars researching and testing such weapons. If deployment became official U.S. policy, such a step would have profound and, we feel, profoundly negative implications for the balance of global power. The United States itself, our analysis suggests, would discover that the military advantages that might be gained from space-based weapons are outweighed by their political and economic costs. It would also create new, asymmetric vulnerabilities to U.S. armed forces, as we will describe in this article. In addition, such systems would be a significant political and strategic departure from 50 years of international law and diplomatic relations. The U.S. and North Atlantic Treaty Organization (NATO) militaries already make extensive use of space-based systems. Satellites revolutionized conflicts such as Operation Iraqi Freedom, letting U.S. aircraft fly one-third the number of sorties and use one-tenth the number of munitions than they had expended just 10 years earlier in the Persian Gulf War. That economy was largely due to the great increase in accuracy offered by space systems. Satellites are now routinely used to detect, identify, locate, and track targets. They also provide mobile, secure communication links between military control centers and theaters of operation, nearreal-time imaging, signals intelligence, and meteorological data. And, of course, the constellation of Global Positioning System (GPS) satellites ensures that military personnel need never be lost amid a war s chaos. With capability, however, has come reliance. In the words of one U.S. Air Force space official, space systems are now woven inextricably throughout the military capabilities of the United States and its allies. And the pace of space operations is accelerating: by 2010, the U.S. military expects it will need twice the capacity of its existing space-based infrastructure in everything from the number of images per day acquired from spy satellites to the bandwidth carried by communications satellites. Without a doubt, the exploitation of space has helped the U.S. military become the most technologically advanced fighting force in the world. At the same time, though, it has made that force deeply vulnerable to an attack on its satellites and other space-based systems. What s more, the means to disable or disrupt this valuable and complex machinery are well within the reach of even technologically unsophisticated adversaries. Indeed, with some U.S. military planners advocating the development of what would be the first-ever space-based systems for offensive operations what the military refers to as force projection the country finds itself fast approaching a crossroads. Space, these planners assert, will usher in a revolution in global warfare, with U.S. space-based weapons delivering destructive force to any point on the globe within minutes, and without the risk or cost of sending soldiers. Realizing the growing strategic value of space, in January 2001 a congressionally mandated space commission headed by incoming Secretary of Defense Donald H. Rumsfeld urged the United States to maintain the option of weaponizing space, identifying three potential missions for space weapons: Protecting existing U.S. systems in space. Denying the use of space and space assets to adversaries. Attacking from space a target anywhere on Earth, at sea, or in the air. In the four years since the Rumsfeld commission released its conclusions, the report has continued to guide U.S. policymaking in this arena. For instance, the U.S. Air Force last year outlined a series of potential space weapons initiatives as part of its 176-page Transformation Flight Plan. Among the weapons described were space- and ground-based lasers, antisatellite missiles, and a futuristic constellation of orbiting high-power radio frequency transmitters capable of disrupting or disabling electronics. A press statement that accompanied the report s release in February 2004 described it as a road map to the future. THE IDEA OF PUTTING WEAPONS IN SPACE is not new. Beginning in the 1960s, at a time when satellites were still quite rare, the former Soviet Union and the United States both tested antisatellite weapons. Despite several decades of development, however, neither country managed to deploy any such weapons. Then, during the Reagan administration, supporters of the Strategic Defense Initiative advanced proposals ranging from space-based lasers to Brilliant Pebbles, numerous small orbiting projectiles to be fired at ballistic missiles in hopes of destroying them. Again, considerable research netted no system worth deploying [see box, Missile Defense from Space ]. Though such systems were positioned as defensive in nature, the line between offensive and defensive space weaponry is more philosophical than technological: the same laser that could be trained on a rogue missile could easily target a commercial satellite instead. Likewise, the technological problems that plagued defensive space weapons will also apply to new offensive designs. Critics of space weapons have long insisted that developing and deploying space weapon systems if feasible at all would be prohibitively expensive and technologically difficult. The majority of the international space-faring community call instead for a perpetuation of the status quo: use space to support terrestrial military activities through communications, reconnaissance, navigation, and even weapon guidance, but not for direct application of force. In other words, the militarization of space is acceptable; the weaponization is not. Now, as the U.S. national security community nears a decision point, policymakers are split on several fundamental questions: Can space weapons effectively mitigate the existing vulnerabilities of U.S. and other satellites and space systems? ILLUSTRATIONS: JOHN MACNEILL 4 IEEE Spectrum March 2005 INT

3 Will space weapons be better than terrestrial alternatives at projecting force and denying adversaries the use of space? Will expected gains from space weapons outweigh financial, strategic, and political costs? Assuming for the moment that space weapons would further U.S. interests, but taking into account that several other countries also have the ability to deploy them, should the United States be the first to do so? SPACE ARROWS: Rods of tungsten, stored on an orbiting platform, would be released to strike buried targets on Earth. However, each rod would take several minutes to reach its target and would be difficult to steer, limiting the weapon to attacking fixed positions. There is also an upper bound on the rods velocity, which means their destructive force would be similar to cheaper conventional explosives. WHAT IS A SPACE WEAPON? As commonly defined, it is a system designed to project destructive force between Earth and outer space or within space itself. Antisatellite weapons, space-based lasers, space-based platforms that fire projectiles, and ground-based lasers that rely on orbiting mirrors to reflect beams to space or back down to Earth all fit the definition. On the other hand, intercontinental ballistic missiles, ground-based electromagnetic jammers aimed at satellite signals, and explosives used to attack satellite ground stations are not considered space weapons. For the most part, space weapons can be classified into four categories: directed-energy weapons, kinetic-energy weapons, conventional warheads delivered to or from space, and microsatellites. A directed-energy weapon uses a beam of electromagnetic energy, whether laser light or high-powered radio waves, to destroy a target. In the case of a laser, the beam heats a target until it melts or catches fire. For radio waves, the weapon stimulates the target s electronic circuits until they are inoperable [see The Dawn of the E-Bomb, IEEE Spectrum, November 2003]. The most widely discussed directed-energy weapon is the space-based laser (SBL), an orbiting system that would use powerful lasers with large mirrors to focus energy on a selected target on Earth, producing damaging or destructive levels of heat. Over the past decade, the Pentagon has spent roughly US $750 million on SBL research, funded primarily by the Air Force and the Ballistic Missile Defense Organization (now the Missile Defense Agency). Various components have been tested on the ground and in the lab, including a megawatt-class chemical laser and the apparatus for pointing and controlling the beam, but the full system has yet to be tested in orbit. Although the U.S. Congress suspended funding in 2003 and called for a review of the program, the concept remains very much alive. Directed-energy weapons propagate their energy at the speed of light, so their effects begin with no appreciable delay beyond the time necessary to acquire a target and point the laser. However, to have the desired effect, the beam must remain on target for some time. For example, to attack a ballistic missile, a space-based 3-MW laser with a 3-meter diameter mirror stationed 1000 kilometers above Earth s surface, in low-earth orbit (LEO), requires an impractical 2 hours and 13 minutes to burn through the rocket casing at a range of 3000 km; a 30-MW laser with a 10-meter diameter mirror in the same orbit and at the same range would take a more reasonable 80 seconds [see illustration, Light Saber ]. For comparison, the entire flight of an intercontinental ballistic missile, from launch to impact, would last only about 45 minutes. Burn time aside, directed-energy weapons speed-oflight propagation cannot be matched by any other weapon. This feature suits them well for targets in remote locations March 2005 IEEE Spectrum INT 5

4 MISSILE DEFENSE FROM SPACE The partial deployment of the U.S. ground-based missile defense system in recent months and more specifically, its technical failures naturally raises the question of basing a ballistic missile defense system in space. Would such a system work? A ballistic missile is most vulnerable during its boost phase, when it is not maneuvering and the stillburning rocket presents a strong infrared signature. Boost phase for a liquid-fueled intercontinental ballistic missile (ICBM) lasts some 250 seconds, while a solid-fuel ICBM may burn out in 170 seconds. The U.S. military has understandably shown a great deal of interest in boost-phase missile defense. A recent study by the American Physical Society, in College Park, Md., analyzed two types of space weapons that have been proposed for intercepting incoming missiles during boost phase: space-based interceptors (SBIs) that would propel a kinetic kill vehicle into a collision with the missile (much like the ground-based interceptors currently being deployed) and space-based lasers. As the study noted, the size of the constellation of SBIs or lasers that would be needed grows in proportion to the number of simultaneous launches that might occur. For example, if a missile-defense constellation can handle at most three simultaneous missiles from a small region, an adversary could surely defeat this defense by launching four. For use against missiles launched from, say, the small state of North Korea, boost-phase interceptors on nearby ships, or on Russian territory south of Vladivostok, would likely be considerably more capable, not to mention cheaper, than space-based interceptors. What s more, these fragile battleships of space would need to be protected from preemptive attack; we describe in the main text how low-earth orbit satellites are relatively easy to destroy. Another proposal for space-based missile defense involves intercepting ICBMs in the 20 minutes of their midcourse fall through space. Though this has been a mainstay of missile-defense advocates since the Star Wars days of the mid-1980s, it is not part of the current administration s program for national missile defense. In large part, this is because midcourse SBIs have no technical advantage over ground-based interceptors and are more expensive. Although the purpose of this article is not to analyze in depth the prospects for intercepting ICBMs, it is worth mentioning that systems limited to destroying missiles in the vacuum of space (that is, midcourse systems) will be useless unless they can deal with the countermeasure of cheap and easily deployed balloon decoys. B.M.D., R.L.G., R.S.K., J.C.M. or beyond the reach of conventional forces, such as the launch facility described in the opening scenario. But even if the target s location is known precisely, the laser is useless if clouds or smoke intervene; it has other shortcomings, too, which will be described later. Kinetic-energy weapons destroy targets by smashing into them at high speed (they are not explosive). According to basic Newtonian physics, the impact energy increases linearly with the projectile s mass, but as the square of its impact velocity. Because collision speed is comparable to orbital or missile speed, lightweight projectiles would be sufficiently destructive assuming they find their target. Such velocities would also help the projectile elude countermeasures and defenses, penetrate armor, and reach buried targets. Hypervelocity Rod Bundles are a leading candidate. More colloquially known as Rods from God, they are long, slim, dense metal rods, typically of tungsten or uranium, each weighing perhaps 100 kilograms and deployed from an orbiting platform. Once a rod is released by the platform, a large two-stage rocket would bring it to a stop, after which orbital dynamics determine the projectile s trajectory to a terrestrial target [see illustration, Space Arrows ]. The slender rods would eventually reach a speed of 3 kilometers per second if dropped from LEO, their length facilitating the penetration of hard or buried targets. Because the rods trajectory paths from LEO would be many hundreds of kilometers long, they would require about 5 minutes to reach their targets, and so it would be difficult to use them against moving objects. Since no target is likely to be directly under the platform s orbital path, each rod would have to be equipped with a rocket or some other means to position it in orbit. Also, the rods would need shielding to keep them from burning up during reentry. The shielding and rocket both add weight and thus increase the cost to put these weapons into orbit in the first place. Once the rod has reentered Earth s atmosphere, it could be maneuvered by shifting an internal mass or by ejecting gas. How destructive could such a weapon be? A 100-kg rod of, say, tungsten falling from an altitude of 460 km and reaching an impact velocity of roughly 3 km/s would have the destructive force of a similar amount of conventional high explosives delivered by bomb or missile. The rod would be more effective than conventional high explosives at penetrating to a buried target, because the rod s force would be concentrated and directed in the line of motion. Higher orbits would deliver greater energies but would take even longer to strike a target about 6 hours, for instance, from geosynchronous orbit. Conventional warheads delivered from space are yet another candidate for the space weapons arsenal. (A conventional intercontinental ballistic missile, or ICBM, which also delivers bombs from above, spends a relatively brief time in space during its trajectory, and is not a space weapon.) One proposal for delivering large quantities of conventional explosives is the Common Aero Vehicle (CAV), a robotic hypersonic aircraft much like a miniature space shuttle. Championed by the U.S. Air Force and the Defense Advanced Research Projects Agency, the Pentagon s entrepreneurial R&D wing based in Arlington, Va., the CAV would be launched into orbit by a land-based missile, aircraft, or some as-yet undeveloped military space plane [see illustration, Orbital Bomber ]. To attack, a CAV would come down from orbit, reenter Earth s atmosphere, and maneuver to its target at speeds as high as Mach 25. The CAV would have one political edge over conventional aircraft: because the vehicle would reenter sovereign airspace only over the target country, the attacker would need no permission to fly over other countries. CAVs could strike hard and deeply buried targets, naval bases, surface combatants, massed forces, mobile targets, airbases, and 6 IEEE Spectrum March 2005 INT

5 military and civilian infrastructure, to name a few examples. To strike a target on the other side of the globe would take about 90 minutes. Other advantages of such rapid strikes include having global reach from the continental United States, the ability to bypass enemy air defenses, and the absence of risk to pilots or support staff. However, in comparison with existing airborne alternatives and missile payloads, the CAV would be costly, and development would take many years. Microsatellites, of all the space weaponry now being developed, are the closest to operational use. Microsatellite mines that would blow up or collide with other satellites could be ready to deploy within a few years of a decision to do so. That decision might already have been made, so that deployment could occur within days of a triggering event. These small, maneuverable satellites would be launched into space on rockets or from larger satellites. Once in orbit, they would be self-powered and -guided. Microsatellites are being developed today for surveillance, inspection, and other nonoffensive tasks, but they could also be used as weapons for example, to attack a far larger and more valuable satellite by blowing up or simply colliding with it at high speed. With compact communications, guidance, control, sensing, and propulsion systems, a microsatellite might weigh only tens or at most hundreds of kilograms, compared to its full-sized cousins weighing thousands of kilograms or more [see illustration, Mobile Mine ]. Drawing a line between peaceful and hostile microsatellites may be impossible. In January 2003, the U.S. Air Force demonstrated its XSS-10 microsatellite, which repeatedly maneuvered to within 35 meters of a target to take photographs. Had it been equipped with a gun instead of a camera, it could have destroyed the target. Within a few months, the Air Force is due to launch the follow-up XSS-11, designed for rendezvous and proximity operations that is, meeting up with other satellites to perform inspections, maintenance, and the like. However, as an unnamed U.S. defense official candidly acknowledged in an interview with Inside The Pentagon in December 2003, the XSS-11 could also be used as an antisatellite weapon. The United States is not unique in its microsatellite capability. Over the last decade, for instance, researchers at the University of Surrey, in Guildford, England, have successfully launched a range of nonmilitary microsatellites, often in partnership with teams from other countries, and have orbited and tested a nanosatellite weighing less than 10 kg. In a sense, microsatellites are as old as space exploration itself. Sputnik-I, weighing in at 84 kg, was technically a microsat, and many of the spacecraft that followed in those early years were similarly small. In the five decades since then, researchers worldwide have steadily refined microsat components, helped tremendously by the general shrinking in sensors and circuitry for computers and communications. At present, a microsat s guidance and control systems can be miniaturized to considerably less than 1 kg, and can derive both propulsion and power from solar cells, thus reducing weight and launch costs. Although microsatellites are perceived primarily as a threat to satellites in LEO, they could be adapted to attack assets in geosynchronous orbit as well. A space mine would be effective only if it were orbiting very close to its quarry, in almost identical orbit. The space mine would not need to be deployed covertly; there would Detonating a nuclear warhead in space would disable hundreds of satellites be no means of destroying or disabling the mine without also risking the destruction of its much more valuable target, so the mine poses a similar threat whether its presence is known or unknown. SHOULD THE UNITED STATES, or any nation for that matter, weaponize space? The answer depends not simply on the capabilities and limitations of proposed space weapons, but also on the military objectives. The Rumsfeld commission laid out three objectives in which space weapons might play a role: to defend existing military capabilities in space; to deny adversaries the military benefit of space; and to attack adversaries from or within space. The last objective is perhaps the most alluring: the prompt and deadly projection of force anywhere on the globe. The psychological impact of such a blow might rival that of such devastating attacks as Hiroshima. But just as the unleashing of nuclear weapons had unforeseen consequences, so, too, would the weaponization of space. Each of the leading proposed space weapons systems has significant physical limitations that make alternatives more effective and affordable by comparison. All orbital systems, including space weapons, share the problem of moving relative to Earth. Space weapons to be used in a localized theater of conflict say, over a battlefield several hundred kilometers across continuously move with respect to targets on the ground; a satellite in LEO, for example, circumnavigates the globe roughly every 90 minutes. Traveling at high speed relative to the ground, each satellite has a limited window during which to strike a ground location typically, 1 or 2 minutes from LEO. A reasonable response time, then, means having an overlapping constellation of many satellites. Straightforward calculations show that 17 identical laser-weapon satellites would be needed to ensure continuous coverage over a single location; this number would suffice for satellites capable of destroying a target up to 3000 km away from the satellites ground track. Fewer satellites would mean less latitudinal coverage on Earth. One could settle for as few as seven satellites, for example, if one were willing to limit coverage to a global swath that measures 3000 km on either side of the equator; this configuration gives coverage, but not without the risk of a delay (not exceeding 13 minutes) for targets near the far edges of the swath. For satellites with a reach shorter than 3000 km, such as kineticenergy weapons, the number of satellites escalates. For a 500-km range, one would need 600 satellites for global coverage. The main point is that many weapons need to be orbiting to ensure that just one weapon is available to strike any possible target at any given time. A particular challenge for space-based lasers is their vulnerability to countermeasures. As mentioned before, even the highest power lasers do not penetrate clouds or smoke. Some wavelengths cannot penetrate Earth s atmosphere, including those used by the hydrogen-fluorine chemical laser currently proposed for the spacebased laser for missile defense. For ground targets, smoke pots could disrupt an attack already in progress. Vulnerability is increased by the need to keep the laser on target for, typically, tens of seconds at least. The target could move in an unpredictable path or simply be covered with reflective coating or paint, which could increase the time required for a successful kill by a factor of 10 or more. A layer of titanium oxide powder, for instance, could reflect 99.9 percent of the incident laser energy. Even a shallow pool of dyed water would offer serious protection. Since March 2005 IEEE Spectrum INT 7

6 ORBITAL BOMBER: A robotic hypersonic aircraft could carry large amounts of conventional explosives to terrestrial targets. However, basing such a system in space would be prohibitively expensive. a 20-MW laser boils water at a rate of 10 kg/s, a pool of water about 3 centimeters deep on the flat roof of a two-car garage would protect against 100 seconds of illumination by a space-based laser. This all adds up to abundant opportunity to thwart laser weapons. Meanwhile, the laser would be burning its supply of hydrogen and fluorine at a rate of 500 kg/s. Over the course of 100 seconds, it would consume 50 tons of fuel, for which the launch costs alone are about half a billion dollars. The issue of energy requirements warrants a closer look. Today, the most efficient high-power lasers typically consume 2 to 3 kg of chemical fuel per megawatt-second. So a pulse of 20 seconds from a 10-MW laser corresponds to about 400 to 600 kg of fuel per target in the absence of any countermeasures. At current launch costs of some $22 000/kg into low-earth orbit, each 20-second laser shot would cost approximately $11 million. For a constellation of 17 lasers, each loaded with a 12-shot capacity, the launch cost to maintain on-orbit fuel alone would exceed $2 billion. Weigh that against a stock of highly effective $6 smoke grenades, a stray cloud, or a 3-cm-deep pool of water, and this multibillion dollar weapon system starts to look like a bad deal. If lasers are prohibitively expensive, might long tungsten rods used as high-speed penetrators be a relative bargain? Not really. To guarantee that a single target (located near the equator, to take the easiest case) could be attacked at will, and not only when a single orbiting rod happened to pass overhead, a distributed constellation of some 40 rods would be necessary, with launch costs totaling some $8 billion. The additional problems of targeting at supersonic speeds and coping with the intense heat of reentry demand extremely advanced, and therefore costly, technologies. Although one can steer the rod by shifting its center of mass, one would still need to obtain the error signals to guide the penetrator to the target. Communicating with the penetrator is complicated by the fact that the surrounding air is heated into a radio-opaque plasma, obstructing even the reception of GPS navigation signals. Although none of these problems is insoluble, they defy inexpensive solutions. For attacking hardened or deeply buried targets, the long rods would not outperform existing missiles equipped with conventional penetrating warheads. That s because the physics of highvelocity impact limits the penetration depth; basically, too much energy at impact causes the projectile to distribute its energy laterally rather than vertically. Tests done since the 1960s by Sandia National Laboratories, in Albuquerque, N.M., confirm that for even the hardest rod materials, maximum penetration is achieved at a velocity of about 1 to 1.5 km/s. Above that speed, the rod tip liquefies, and penetration depth becomes essentially independent of impact speed. Therefore, for maximum penetration, the long rods would need to be slowed to about 1 km/s, thereby delivering only one-ninth the destructive energy per gram as a conventional explosive or about 1.5 percent of the energy the rod had in LEO. The wasted energy would be immense, and the effort, cost, and complexity of an orbital system would be entirely out of proportion to the results. For soft targets on the surface, such as aircraft, ships, or even tanks, the United States already has many quicker, simpler alternatives to space-based kinetic energy systems such as long rods. Explosives delivered by long-range cruise missile, ICBM, or submarine-launched ballistic missile are all more attractive options. The space-based common aero vehicle also comes out a loser in comparison with weapons delivered by ICBM or shorter-range missile. Although the CAV may take only 90 minutes from launch to detonation, that would be preceded by as much as 12 hours for the target to come into range. Recall that an ICBM can get almost anywhere on Earth in well under an hour. Of course, populating many orbits with CAVs would reduce the response time, but would also run up the cost. Aircraft carriers, submarines, and even CAVs launched on demand by missile would all provide better performance than a space-based CAV. ANOTHER OBJECTIVE laid out by the Rumsfeld commission was to defend existing military capabilities in space. While everyone agrees on the desirability of this goal, opinions vary over whether and how space weapons might help. In framing the debate, it helps to consider the kinds of threats that existing satellites face. In roughly decreasing likelihood, these threats include: denial and deception (where an adversary conceals or camouflages his activities, hiding a chemical weapons lab within a mundane-looking agricultural fertilizer plant, for example, or using an underground bunker); electronic warfare (such as the jamming of satellite signals); physical attacks on satellite ground stations; blinding of satellite sensors with lasers; attacks in space by microsatellites; hit-to-kill antisatellite weapons; and highaltitude nuclear detonation. Each threat would affect satellites differently. For instance, denial and deception thwarts only satellites performing intelligence-gathering missions. And satellites in geosynchronous orbit are less vulnerable to hit-to-kill weapons or a high-altitude nuclear burst. Other threats, such as electronic warfare and attacks on ground stations, could degrade the performance of all kinds of satellites. Nor would space weapons be equally effective against these threats. Denial and deception, electronic warfare, attacks on ground stations, and satellite blinding the four most likely threats would be mounted predominantly from the ground, and space weapons would offer little or no defense against 8 IEEE Spectrum March 2005 INT

7 them. Moreover, they are low-tech and inexpensive compared with space weapons. Space weapons might prove useful against microsatellites, antisatellite weapons, and nuclear explosions attacks occurring in space and therefore more difficult to fend off from the ground. For example, a nuclear warhead detonated in space, even one 100 times less powerful than the 1.4-megaton hydrogen bomb that the United States tested at an altitude of 400 km in July 1962, would destroy or disable many of the hundreds of satellites in LEO [see illustration, Easy Prey ]. The blast wave from such an explosion would be insignificant, and even the powerful pulse of X-rays would affect only those satellites near the blast site. But many of the high-energy electrons from the products of nuclear fission would be trapped in the Van Allen radiation belts, degrading almost all satellites in LEO over the course of several months. By initiating a high-altitude nuclear burst, a country must be willing to forgo its own space assets (or be one with few such assets to begin with). But the attack could do significant damage to valuable LEO satellites, including most military reconnaissance, surveillance, and intelligence satellites, as well as commercial and research satellites used for imaging and communication. The means for such an attack already exist, in the form of thousands of Soviet-designed Scud missiles. The Scud-C, for example, sold by North Korea to Syria and other states, has a horizontal range of 600 km with a 700-kg payload; fired vertically, a Scud-C could reach 300 km. The positions of most large satellites are tracked by amateur astronomers and others and readily available on the Internet. Accordingly, even a country with modest resources would be able to launch a Scud or some other short-range missile on a nearly vertical trajectory, arranged so that the apogee is in the path of an approaching satellite. A single satellite in LEO can be destroyed without a nuclear warhead: if, for instance, a Scud used a mild explosive or a gas puff to disperse a few hundred kilograms of sand or gravel in LEO. The cloud of debris, falling only 1 km in the initial 15 seconds, would gravely threaten any satellite passing through it at orbital speeds of about km/hr. The threat that microsatellites could pose to existing space systems is probably greater than their potential benefit to the United States as weapons. An adversary microsatellite could use two quite different modes to destroy a quarry satellite. The first means is direct impact: placed in an orbit that nearly intersects with its quarry s, the microsatellite could leisurely fire its rocket to convert a normal and nonthreatening 100-km miss into a direct collision. Accelerating just 0.1 km/s (an expenditure of 3 percent of the satellite mass as rocket fuel) will net a 100-km displacement in 1000 seconds about one-fifth of an orbit period in LEO, and far too little time for the quarry satellite s operators to take effective countermeasures. As the microsat approached the quarry, it might deploy a lethality enhancement device, such as a weighted net, to improve its chances of success. No short-range defense seems possible against such a high-speed intercept, unless the quarry satellite were capable of rapidly maneuvering out of harm s way, or unless it deployed confusion devices, such as balloon reflectors, to prevent the microsatellite from homing in on it. Current satellite systems do not have these protective capabilities. MOBILE MINE: Cheap, maneuverable, and stealthy, a microsatellite could creep up on an enemy satellite and explode or collide with it. But if the United States deployed such weapons, it would open the floodgates to similar threats to U.S. military and commercial satellites. Microsatellites could also launch an explosive or projectile. For instance, a quarry would be unable to elude a space mine hovering just tens of meters away and equipped with an explosively driven pellet weapon or shaped-charge projectile. The microsat could also be programmed to fire if blinded or disturbed. Various defenses to microsats can be imagined. A quarry satellite could be outfitted with sensors capable of detecting small, lowspeed satellites, or it might be equipped with specialized defensive vehicles (perhaps even a fleet of bodyguard microsatellites of its own) to repel approaching space mines without harming the quarry. How easy would it be to detect and track such space mines, and thereby thwart their attack? The U.S. Air Force Space Command, headquartered at Peterson Air Force Base in Colorado, indicates that it is responsible for tracking objects larger than 10 centimeters orbiting Earth, and currently tracks some 9000 such objects. But even perfect tracking would reveal only after the fact which satellite or launch was responsible for destroying the quarry. A real defense would require additional measures, such as those described above. And it is unclear, at least to us, how proposed U.S. space weapons would protect themselves against such threats. IF SPACE WEAPONS ARE NOT OUR BEST HOPE for protecting valuable communications, imaging, and other satellites, what are the alternatives? One attractive solution that avoids the political, economic, and technical difficulties of space weapons would be to reduce our dependence on space assets. Satellite communication, for instance, typically relies on large and expensive satellites, and the loss of even one of these would have a crippling effect. Although some defense satellites do have backups, the majority of U.S. commercial communications and imaging systems have little redundancy. But if communications instead March 2005 IEEE Spectrum INT 9

8 EASY PREY: Hundreds of commercial, military, and research satellites now orbit relatively close by, in low Earth orbit. Others lie in relatively safer geosynchronous orbit, visible here as the ring of dots circling furthest from the Earth. NETWORKING ON THE FLY: High-altitude UAVs can supplement satellites during conflicts, relaying radio signals and intelligence imagery between headquarters and the battlefield. COMSAT Global Hawk UAV Aircraft carrier Unmanned aerial vehicle (UAV) DarkStar UAV E-8 aircraft Deep-strike aircraft Front line Highly defended area Predator UAV Headquarters Troops were configured in a distributed, load-balancing network of smaller satellites, an attack on one node, or even several, would do little harm. Such a strategy would also protect against system failures, accidents, and other disruptions to satellite communications. As an alternative to redundancy and distribution, existing communications and intelligence-gathering satellites could be enhanced temporarily with terrestrial and airborne measures using unmanned aerial vehicles (UAVs), piloted aircraft, high-altitude balloons, or even rockets [see illustration, Networking on the Fly ]. These strategies would also arouse far less international opposition than would the deployment of space weapons. Such backup systems would also be more effective in many settings than the satellite system at risk. Take the Global Positioning System, which currently consists of 28 satellites in medium-earth orbit. An adversary might have an interest in denying GPS capability in a particular locale such as the battlefield but rarely in denying the service worldwide. Also, it is far easier to jam the weak GPS signal across a few hundred kilometers than to destroy several of the GPS satellites in their high orbits. In effect, a handful of jammers would do as much damage to local U.S. capability as the destruction of the satellites themselves. Space weapons would be useless in countering such a scenario. Instead, within the expected area of jamming, the United States could deploy a network of short-range GPS transmitters carried by high-altitude UAVs, balloons, or, if necessary, rockets. Such 10 IEEE Spectrum March 2005 INT

9 pseudolites, flying at altitudes of 20 to 30 km, would use an antenna to distribute a powerful GPS-like signal. Pseudolites aboard sounding rockets, on the other hand, would have to be launched a few times a day to maintain a strong signal and would need a large antenna to focus the energy on a small area. Either way, the pseudolites would effectively protect the real GPS network, because the enemy would not achieve its goal by destroying the satellites. In similar fashion, battlefield communications satellites could be replaced by radio relay transmitters aboard UAVs. For imaging, UAVs could not only replace satellites, but in many cases outperform their high-flying counterparts, as recent experiences in Iraq and Afghanistan have demonstrated. To begin with, UAVs can almost always get at least 10 times closer to an area of interest; a 20-cm mirror or lens on a UAV at 20 km above Earth would be equivalent to a 300-cm mirror aboard a satellite orbiting at 300 km. Furthermore, UAVs can linger over a site of interest, unlike satellites, and can carry a wider variety of imaging equipment, including optical, infrared, and advanced synthetic aperture radars, which can image through darkness and cloud cover. Beyond imaging, UAVs can readily track moving targets on the ground across an area of hundreds of kilometers. On the other hand, satellites can and do provide global coverage that UAVs can never match. But most military operations are local. The real threats come from regional disruption, and those threats can be countered by regional alternatives. RETURN NOW TO THE THREE POTENTIAL ROLES for space weapons: protecting existing satellites, denying the hostile use of space, and projecting force worldwide. It is difficult to identify a space weapon that is more attractive than its competing terrestrial alternatives. Offensive space weapons face inherent limitations, including long distances to targets and high energy requirements, which suggest in many circumstances a non-space-based alternative, such as forward-deployed missiles and conventional ICBMs. In nearly every case, space weapons are more complex, more costly, and less effective than Earth-based weapons. Moreover, we have seen that there are a number of ways to render military space systems inoperable without destroying the satellites themselves, such as attacks on their ground stations. In such cases, space weapons would be rendered useless. We have also argued that satellites could be better defended with redundant systems that would mitigate attacks, or with stand-in capabilities provided by UAVs or balloons above the battlefield. As for denying adversaries the use of space, this may likewise be more readily achieved by less-expensive terrestrial alternatives, such as electromagnetic jamming and the temporary blinding of adversaries reconnaissance systems. The United States would prefer a world in which it alone had military space systems, weapons in space, and antisatellite capability. However, such a world never existed and never will. Already, several states and consortia have autonomous space-launch capabilities, notably Russia, China, Ukraine, Japan, India, and the European Union. Such groups would likely respond if the United States took a first step toward weaponizing space. Consider, instead, a U.S. declaration that it would not be the first to deploy space weapons or to test destructive antisatellite systems, issued in parallel with an urgent challenge to negotiate an international treaty to this effect. From such a position, the United States could credibly declare that deploying space weapons would be regarded as a threat to U.S. security and that destruction of a U.S. satellite would be regarded as an attack on U.S. territory. Even without space weapons, the United States could respond to an attack on its satellites with its unmatched terrestrial military capabilities. Adversaries would expect that a heavy toll would be exacted as a result of any attack on U.S. satellites; that expectation alone would almost certainly suffice to deter any such attack. In an all-out shooting war on Earth, we cannot expect that space would be a sanctuary for military systems supporting the weapons of that war. But the scenario sketched here, with the United States leading an urgent effort to ban space weapons and antisatellite tests or use, would help ensure that a shooting war on Earth would not be provoked by weapons in space. This article opened with a fictional incident illustrating the appeal of space weapons. We will close by describing a possible outcome of such an incident, to offer a cautionary note about the risks and possible consequences of deploying space weapons. On the one-year anniversary of the 12 June 2019destruction of the command and control center of the rogue nation, a U.S. congressional review commission releases its findings. The center suffered minimal damage, returning to 75 percent capacity within 30 days, suggesting that the rogue country s leadership had been expecting such an assault. Additionally, no illegal weapons of any kind were found on the airliner in question. Several months after the incident, one of the six orbiting U.S. space-based laser satellites inexplicably exploded causing an international space-debris incident of its own. This satellite happened to be the same one used against the launch facility, having thus revealed its location. Suspicions include an adversarial space mine, but the orbiting clouds of debris tell no tales. The final conclusion of the congressional commission: the rogue country s leadership instigated the incident by feeding the U.S. intelligence machine disinformation. The United States came away having disclosed its deployment of space-based weapons, to international outcry. Also, the incident was widely portrayed as U.S. bullying of a Third World nation. While it is surmised that the smaller country had a hand in destroying a $20 billion U.S. satellite, its officials rigorously denied any role in the episode. In the end, the incident was recorded not as a measure of U.S. superiority in space, but as a U.S. space debacle. ABOUT THE AUTHORS Bruce M. DeBlois is director of systems integration for BAE Systems in Reston, Va. Richard L. Garwin (F) is IBM Fellow Emeritus at the Thomas J. Watson Research Center, Yorktown Heights, N.Y. (Correspondence should be addressed to him at RLG2@us.ibm.com.) R. Scott Kemp is a member of the research staff of the Program on Science and Global Security at Princeton University, in New Jersey. Jeremy C. Marwell is a Furman Scholar at the New York University School of Law, in New York City. This article is based on work the authors did while at the Council on Foreign Relations. TO PROBE FURTHER For a similar classification of space weapons, see a report by Bob Preston et al., Space Weapons, Earth Wars, published by RAND Corp., MR-1209-AF (2002) and available online at org/publications/mr/mr1209/. Report of the Commission to Assess United States National Security Space Management and Organization, by Donald H. Rumsfeld et al., was published 11 January It is available online at See also Space Operations: Through The Looking Glass (Global Area Strike System), by Jamie G. G. Varni et al., published by the Air War College, Maxwell Air Force Base, August The feasibility of space-based missile defense was assessed in Report of the APS Study Group on Boost-Phase Intercept Systems for National Missile Defense, published 15 July It is available online at March 2005 IEEE Spectrum INT 11

Space Weapons: Not Yet

Space Weapons: Not Yet 6. DISCUSSION PAPER (Garwin) Pugwash Meeting No. 283: Pugwash Workshop on Preserving the Non-Weaponization of Space Castellón de la Plana, Spain, 22-24 May 2003 Space Weapons: Not Yet Richard L. Garwin

More information

Arms Control Today. U.S. Missile Defense Programs at a Glance

Arms Control Today. U.S. Missile Defense Programs at a Glance U.S. Missile Defense Programs at a Glance Arms Control Today For the past five decades, the United States has debated, researched, and worked on the development of defenses to protect U.S. territory against

More information

Trusted Partner in guided weapons

Trusted Partner in guided weapons Trusted Partner in guided weapons Raytheon Missile Systems Naval and Area Mission Defense (NAMD) product line offers a complete suite of mission solutions for customers around the world. With proven products,

More information

Exhibit R-2, RDT&E Budget Item Justification

Exhibit R-2, RDT&E Budget Item Justification PE NUMBER: 0603500F PE TITLE: MULTI-DISCIPLINARY ADV Exhibit R-2, RDT&E Budget Item Justification BUDGET ACTIVITY PE NUMBER AND TITLE Cost ($ in Millions) FY 2006 FY 2007 FY 2008 FY 2009 FY 2010 FY 2011

More information

Indefensible Missile Defense

Indefensible Missile Defense Indefensible Missile Defense Yousaf M. Butt, Scientific Consultant, FAS & Scientist-in-Residence, Monterey Institute ybutt@fas.or Big Picture Issues - BMD roadblock to Arms Control, space security and

More information

Military Radar Applications

Military Radar Applications Military Radar Applications The Concept of the Operational Military Radar The need arises during the times of the hostilities on the tactical, operational and strategic levels. General importance defensive

More information

Challenges of a New Capability-Based Defense Strategy: Transforming US Strategic Forces. J.D. Crouch II March 5, 2003

Challenges of a New Capability-Based Defense Strategy: Transforming US Strategic Forces. J.D. Crouch II March 5, 2003 Challenges of a New Capability-Based Defense Strategy: Transforming US Strategic Forces J.D. Crouch II March 5, 2003 Current and Future Security Environment Weapons of Mass Destruction Missile Proliferation?

More information

Introduction to missiles

Introduction to missiles Introduction to missiles 5 th Residential Workshop for Young Scholars Global Nuclear Politics and Strategy Rajaram Nagappa International Strategic & Security Studies Programme National Institute of Advanced

More information

Fact Sheet: North Korea Missile Activity in 2017

Fact Sheet: North Korea Missile Activity in 2017 Fact Sheet: North Korea Activity in 2017 February 12, 2017 Medium Range Ballistic Launch Pukguksong-2, also known as the KN-15 Flight The missile flew ~ 500 km (310 mi) on a lofted trajectory, reaching

More information

Global Vigilance, Global Reach, Global Power for America

Global Vigilance, Global Reach, Global Power for America Global Vigilance, Global Reach, Global Power for America The World s Greatest Air Force Powered by Airmen, Fueled by Innovation Gen Mark A. Welsh III, USAF The Air Force has been certainly among the most

More information

mm*. «Stag GAO BALLISTIC MISSILE DEFENSE Information on Theater High Altitude Area Defense (THAAD) and Other Theater Missile Defense Systems 1150%

mm*. «Stag GAO BALLISTIC MISSILE DEFENSE Information on Theater High Altitude Area Defense (THAAD) and Other Theater Missile Defense Systems 1150% GAO United States General Accounting Office Testimony Before the Committee on Foreign Relations, U.S. Senate For Release on Delivery Expected at 10:00 a.m.,edt Tuesday May 3,1994 BALLISTIC MISSILE DEFENSE

More information

Banning Ballistic Missiles? Missile Control for a Nuclear-Weapon-Free World

Banning Ballistic Missiles? Missile Control for a Nuclear-Weapon-Free World Banning Ballistic Missiles? Missile Control for a Nuclear-Weapon-Free World Jürgen Scheffran Program in Arms Control, Disarmament and International Security University of Illinois at Urbana-Champaign International

More information

A FUTURE MARITIME CONFLICT

A FUTURE MARITIME CONFLICT Chapter Two A FUTURE MARITIME CONFLICT The conflict hypothesized involves a small island country facing a large hostile neighboring nation determined to annex the island. The fact that the primary attack

More information

Differences Between House and Senate FY 2019 NDAA on Major Nuclear Provisions

Differences Between House and Senate FY 2019 NDAA on Major Nuclear Provisions Differences Between House and Senate FY 2019 NDAA on Major Nuclear Provisions Topline President s Request House Approved Senate Approved Department of Defense base budget $617.1 billion $616.7 billion

More information

We Produce the Future

We Produce the Future We Produce the Future Think Tank Presentation Space Weaponization A Blended Approach to Nuclear Deterrence Capt Joey Aguilo Space Acquisitions Program Manager Capt Samuel Backes Cyberspace Operations Officer

More information

Reconsidering the Relevancy of Air Power German Air Force Development

Reconsidering the Relevancy of Air Power German Air Force Development Abstract In a dynamically changing and complex security political environment it is necessary to constantly reconsider the relevancy of air power. In these days of change, it is essential to look far ahead

More information

Commentary to the HPCR Manual on International Law Applicable to Air and Missile Warfare

Commentary to the HPCR Manual on International Law Applicable to Air and Missile Warfare Commentary to the HPCR Manual on International Law Applicable to Air and Missile Warfare Elaborated by the Drafting Committee of the Group of Experts under the supervision of Professor Yoram Dinstein.

More information

2018 Annual Missile Defense Small Business Programs Conference

2018 Annual Missile Defense Small Business Programs Conference 2018 Annual Missile Defense Small Business Programs Conference DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. 15 May 2018 Mr. Joseph C. Keelon Program Executive for Advanced

More information

Chapter 13 Air and Missile Defense THE AIR THREAT AND JOINT SYNERGY

Chapter 13 Air and Missile Defense THE AIR THREAT AND JOINT SYNERGY Chapter 13 Air and Missile Defense This chapter addresses air and missile defense support at the operational level of war. It includes a brief look at the air threat to CSS complexes and addresses CSS

More information

Why Japan Should Support No First Use

Why Japan Should Support No First Use Why Japan Should Support No First Use Last year, the New York Times and the Washington Post reported that President Obama was considering ruling out the first-use of nuclear weapons, as one of several

More information

9. Guidance to the NATO Military Authorities from the Defence Planning Committee 1967

9. Guidance to the NATO Military Authorities from the Defence Planning Committee 1967 DOCTRINES AND STRATEGIES OF THE ALLIANCE 79 9. Guidance to the NATO Military Authorities from the Defence Planning Committee 1967 GUIDANCE TO THE NATO MILITARY AUTHORITIES In the preparation of force proposals

More information

This Protocol is organized into ten Parts.

This Protocol is organized into ten Parts. PROTOCOL TO THE TREATY BETWEEN THE UNITED STATES OF AMERICA AND THE RUSSIAN FEDERATION ON MEASURES FOR THE FURTHER REDUCTION AND LIMITATION OF STRATEGIC OFFENSIVE ARMS Pursuant to Article I of the Treaty

More information

The best days in this job are when I have the privilege of visiting our Soldiers, Sailors, Airmen,

The best days in this job are when I have the privilege of visiting our Soldiers, Sailors, Airmen, The best days in this job are when I have the privilege of visiting our Soldiers, Sailors, Airmen, Marines, and Civilians who serve each day and are either involved in war, preparing for war, or executing

More information

Doc 01. MDA Discrimination JSR August 3, JASON The MITRE Corporation 7515 Colshire Drive McLean, VA (703)

Doc 01. MDA Discrimination JSR August 3, JASON The MITRE Corporation 7515 Colshire Drive McLean, VA (703) Doc 01 MDA Discrimination JSR-10-620 August 3, 2010 JASON The MITRE Corporation 7515 Colshire Drive McLean, VA 22102 (703) 983-6997 Abstract This JASON study reports on discrimination techniques, both

More information

2017 Annual Missile Defense Small Business Programs Conference

2017 Annual Missile Defense Small Business Programs Conference 2017 Annual Missile Defense Small Business Programs Conference DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. DISTRIBUTION STATEMENT A. Approved for public release; distribution

More information

The Verification for Mission Planning System

The Verification for Mission Planning System 2016 International Conference on Artificial Intelligence: Techniques and Applications (AITA 2016) ISBN: 978-1-60595-389-2 The Verification for Mission Planning System Lin ZHANG *, Wei-Ming CHENG and Hua-yun

More information

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 10 R-1 Line #10

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 10 R-1 Line #10 Exhibit R-2, RDT&E Budget Item Justification: PB 2015 Army Date: March 2014 2040: Research, Development, Test & Evaluation, Army / BA 2: Applied Research COST ($ in Millions) Prior Years FY 2013 FY 2014

More information

. ~ :C space-based antisatellite laser prototype within the next. ~;\ several years. The Soviets also could have ground-based

. ~ :C space-based antisatellite laser prototype within the next. ~;\ several years. The Soviets also could have ground-based _ that the radar is designed for ballistic missile detection and tracking. Advanced Strategic Defense Technologies Since the 1960s, the Soviets have been conducting a substantial research program to develop

More information

Keywords. Guided missiles, Classification of guided missiles, Subsystems of guided missiles

Keywords. Guided missiles, Classification of guided missiles, Subsystems of guided missiles Chapter 5 GUIDED MISSILES Keywords. Guided missiles, Classification of guided missiles, Subsystems of guided missiles 5.1 INTRODUCTION Guided missiles have been in the forefront of modern warfare since

More information

SOVIET STRATEGIC FORCE DEVELOPMENTS

SOVIET STRATEGIC FORCE DEVELOPMENTS SOVIET STRATEGIC FORCE DEVELOPMENTS TESTIMONY BEFORE A JOINT SESSION OF THE SUBCOMMITTEE ON STRATEGIC AND THEATER NUCLEAR FORCES OF THE SENATE ARMED SERVICES COMMITTEE AND THE DEFENSE SUBCOMMITTEE OF THE

More information

Section 7 A HYPOTHETICAL SYSTEM ARCHITECTURE

Section 7 A HYPOTHETICAL SYSTEM ARCHITECTURE Section 7 A HYPOTHETICAL SYSTEM ARCHITECTURE Section 7 A HYPOTHETICAL SYSTEM ARCHITECTURE Most analysts of boost-phase BMD assume that midcourse and terminal BMDs will augment the boost-phase layer. This

More information

Issue 16-04B (No. 707) March 22, THAAD 2. CHINA S CORE KOREA POLICY 3. UN SANCTIONS WHICH ONE NEXT? 5.

Issue 16-04B (No. 707) March 22, THAAD 2. CHINA S CORE KOREA POLICY 3. UN SANCTIONS WHICH ONE NEXT? 5. 1 Issue 16-04B (No. 707) March 22, 2016 1. THAAD 2. CHINA S CORE KOREA POLICY 3. UN SANCTIONS 2016 4. WHICH ONE NEXT? 5. EAGLE HUNTING 1. THAAD 2 THAAD carries no warhead. It is a purely defensive system.

More information

Headquarters U.S. Air Force

Headquarters U.S. Air Force Headquarters U.S. Air Force Presented to the National Defense Industrial Association (DoD Technology Exposition) Mr. Jim Engle Deputy Assistant Secretary (Science, Technology & Engineering) 6 March 2003

More information

United States Air Force and Military Aircraft

United States Air Force and Military Aircraft United States Air Force and Military Aircraft US Air Force Mission: Defend the United States through the control and exploitation of air and space. Aim: air dominance United States Air Force Functions:

More information

MATCHING: Match the term with its description.

MATCHING: Match the term with its description. Arms RACE Name THE ARMS RACE The United States and the Soviet Union became engaged in a nuclear arms race during the Cold War. Both nations spent billions of dollars trying to build up huge stockpiles

More information

AIRBORNE LASER (ABL)

AIRBORNE LASER (ABL) AIRBORNE LASER (ABL) Air Force ACAT ID Program Prime Contractor Total Number of Systems: 7 aircraft Boeing Total Program Cost (TY$): $6335M Average Unit Cost (TY$): $528M Full-rate production: FY06 SYSTEM

More information

OSD Perspective. Presentation to the 2003 Munitions Executive Summit Falls Church, VA 12 February George W. Ullrich

OSD Perspective. Presentation to the 2003 Munitions Executive Summit Falls Church, VA 12 February George W. Ullrich OSD Perspective Presentation to the 2003 Munitions Executive Summit Falls Church, VA 12 February 2003 George W. Ullrich Director, Weapons Systems Office of the Secretary of Defense ODUSD(S&T) george.ullrich@osd.mil

More information

MEADS MEDIUM EXTENDED AIR DEFENSE SYSTEM

MEADS MEDIUM EXTENDED AIR DEFENSE SYSTEM MEADS MEDIUM EXTENDED AIR DEFENSE SYSTEM MEADS WORLD CLASS THEATER AIR & MISSILE DEFENSE MEADS has been developed to defeat next-generation threats including tactical ballistic missiles (TBMs), unmanned

More information

HOMELAND SECURITY PRESIDENTIAL DIRECTIVE-4. Subject: National Strategy to Combat Weapons of Mass Destruction

HOMELAND SECURITY PRESIDENTIAL DIRECTIVE-4. Subject: National Strategy to Combat Weapons of Mass Destruction [National Security Presidential Directives -17] HOMELAND SECURITY PRESIDENTIAL DIRECTIVE-4 Unclassified version December 2002 Subject: National Strategy to Combat Weapons of Mass Destruction "The gravest

More information

Space Situational Awareness

Space Situational Awareness Space Situational Awareness Difficult, Expensive and Necessary Dr. Gene H. McCall John H. Darrah * In 1990 Operation Desert Storm, which marked the first widespread use of precision-guided munitions and

More information

Math 120 Winter Recitation Handout 4: Introduction to Related Rates

Math 120 Winter Recitation Handout 4: Introduction to Related Rates Math 120 Winter 2009 Recitation Handout 4: Introduction to Related Rates The specific learning goals of this activity are for you to: Learn how to use trigonometry formulas to work out solutions to ballistics

More information

Weaponisation and Militarisation of Space

Weaponisation and Militarisation of Space Weaponisation and Militarisation of Space PN Tripathi Introduction Outer space is an environment that has long fascinated mankind, who have, from the dawn of time, tried to interpret its significance for

More information

CRS Report for Con. The Bush Administration's Proposal For ICBM Modernization, SDI, and the B-2 Bomber

CRS Report for Con. The Bush Administration's Proposal For ICBM Modernization, SDI, and the B-2 Bomber CRS Report for Con The Bush Administration's Proposal For ICBM Modernization, SDI, and the B-2 Bomber Approved {,i. c, nt y,,. r r'ii^i7" Jonathan Medalia Specialist in National Defense Foreign Affairs

More information

LESSON 5: THE U.S. AIR FORCE

LESSON 5: THE U.S. AIR FORCE LESSON 5: THE U.S. AIR FORCE avionics parity payload proliferation stealth INTRODUCTION The U.S. Air Force exemplifies the dominant role of air and space power in meeting this nation s security needs across

More information

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 16 R-1 Line #45

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 16 R-1 Line #45 Exhibit R-2, RDT&E Budget Item Justification: PB 2015 Army Date: March 2014 2040: Research, Development, Test & Evaluation, Army / BA 3: Advanced Technology Development (ATD) COST ($ in Millions) Prior

More information

HEADQUARTERS DEPARTMENT OF THE ARMY FM US ARMY AIR AND MISSILE DEFENSE OPERATIONS

HEADQUARTERS DEPARTMENT OF THE ARMY FM US ARMY AIR AND MISSILE DEFENSE OPERATIONS HEADQUARTERS DEPARTMENT OF THE ARMY FM 44-100 US ARMY AIR AND MISSILE DEFENSE OPERATIONS Distribution Restriction: Approved for public release; distribution is unlimited FM 44-100 Field Manual No. 44-100

More information

This Minuteman III missile launch illustrates two of the reasons why boost-phase interception is often more advantageous than attempting interception

This Minuteman III missile launch illustrates two of the reasons why boost-phase interception is often more advantageous than attempting interception Findings in Brief Ballistic missiles equipped with nuclear warheads and other mechanisms of mass destruction are the most potent weapons that America s defenders face. The number of ballistic missiles

More information

Airborne Patrol to Destroy DPRK ICBMs in Powered Flight

Airborne Patrol to Destroy DPRK ICBMs in Powered Flight MIT Science, Technology, and National Security Working Group Airborne Patrol to Destroy DPRK ICBMs in Powered Flight Richard L. Garwin IBM Fellow Emeritus Voice: 914 945-2555; e-mail: rlg2@us.ibm.com Theodore

More information

International and Regional Threats Posed by the LAWS: Russian Perspective

International and Regional Threats Posed by the LAWS: Russian Perspective International and Regional Threats Posed by the LAWS: Russian Perspective Dr. Vadim Kozyulin PIR Center for Policy Studies kozyulin@pircenter.org www.pircenter.org Threat of Occasional Incidents Threat

More information

Issue Briefs. Nuclear Weapons: Less Is More. Nuclear Weapons: Less Is More Published on Arms Control Association (

Issue Briefs. Nuclear Weapons: Less Is More. Nuclear Weapons: Less Is More Published on Arms Control Association ( Issue Briefs Volume 3, Issue 10, July 9, 2012 In the coming weeks, following a long bipartisan tradition, President Barack Obama is expected to take a step away from the nuclear brink by proposing further

More information

18. WARHEADS AND GUIDANCE SYSTEMS

18. WARHEADS AND GUIDANCE SYSTEMS Briefing 1. A wide range of weapons is capable of firing projectiles with warheads. Many of these weapons can fire more than one type of warhead. Most warheads combine a powerful attack factor with an

More information

Issue Briefs. NNSA's '3+2' Nuclear Warhead Plan Does Not Add Up

Issue Briefs. NNSA's '3+2' Nuclear Warhead Plan Does Not Add Up Issue Briefs Volume 5, Issue 6, May 6, 2014 In March, the Obama administration announced it would delay key elements of its "3+2" plan to rebuild the U.S. stockpile of nuclear warheads amidst growing concern

More information

Kinetic Energy Kill for Ballistic Missile Defense: A Status Overview

Kinetic Energy Kill for Ballistic Missile Defense: A Status Overview Order Code RL33240 Kinetic Energy Kill for Ballistic Missile Defense: A Status Overview Updated January 5, 2007 Steven A. Hildreth Specialist in National Defense Foreign Affairs, Defense, and Trade Division

More information

The Cruise Missile Threat: Prospects for Homeland Defense

The Cruise Missile Threat: Prospects for Homeland Defense 1 June 2006 NSW 06-3 This series is designed to provide news and analysis on pertinent national security issues to the members and leaders of the Association of the United States Army and to the larger

More information

Space and Counter. AIR FORCE Magazine / June Artists s conception by Eric Simonsen

Space and Counter. AIR FORCE Magazine / June Artists s conception by Eric Simonsen Space and Counter Artists s conception by Eric Simonsen The Pentagon is hoping it can avoid conflict in space. More than any other nation, the United States is heavily dependent on space assets for all

More information

Ballistic Missile Defense: Historical Overview

Ballistic Missile Defense: Historical Overview Order Code RS22120 Updated January 5, 2007 Ballistic Missile Defense: Historical Overview Steven A. Hildreth Specialist in National Defense Foreign Affairs, Defense, and Trade Division Summary For some

More information

North Korea's Nuclear Programme and Ballistic Missile Capabilities: An Assessment

North Korea's Nuclear Programme and Ballistic Missile Capabilities: An Assessment INSTITUTE OF STRATEGIC STUDIES web: www.issi.org.pk phone: +92-920-4423, 24 fax: +92-920-4658 Issue Brief North Korea's Nuclear Programme and Ballistic Missile Capabilities: An Assessment June 16, 2017

More information

KEY NOTE ADRESS AT ASSOCIATION OF OLD CROWS

KEY NOTE ADRESS AT ASSOCIATION OF OLD CROWS KEY NOTE ADRESS AT ASSOCIATION OF OLD CROWS Over the past few months a group of dedicated and passionate electronic warfare professionals have been coming together to discuss and plan the revival of the

More information

F-16 Fighting Falcon The Most Technologically Advanced 4th Generation Fighter in the World

F-16 Fighting Falcon The Most Technologically Advanced 4th Generation Fighter in the World F-16 Fighting Falcon The Most Technologically Advanced 4th Generation Fighter in the World Any Mission, Any Time... the F-16 Defines Multirole The enemies of world peace are changing. The threats are smaller,

More information

Nuclear Forces: Restore the Primacy of Deterrence

Nuclear Forces: Restore the Primacy of Deterrence December 2016 Nuclear Forces: Restore the Primacy of Deterrence Thomas Karako Overview U.S. nuclear deterrent forces have long been the foundation of U.S. national security and the highest priority of

More information

Denied, Degraded and Disrupted

Denied, Degraded and Disrupted Denied, Degraded and Disrupted By William T. Coffey Jr., Joan Rousseau and Lt. Col. Scott Mudge For Your Consideration Jamming of space-enabled operational systems is expected. Commanders and staffs need

More information

STATEMENT OF GORDON R. ENGLAND SECRETARY OF THE NAVY BEFORE THE SENATE ARMED SERVICES COMMITTEE 10 JULY 2001

STATEMENT OF GORDON R. ENGLAND SECRETARY OF THE NAVY BEFORE THE SENATE ARMED SERVICES COMMITTEE 10 JULY 2001 NOT FOR PUBLICATION UNTIL RELEASED BY THE SENATE ARMED SERVICES COMMITTEE STATEMENT OF GORDON R. ENGLAND SECRETARY OF THE NAVY BEFORE THE SENATE ARMED SERVICES COMMITTEE 10 JULY 2001 NOT FOR PUBLICATION

More information

Joint Space Mission Areas

Joint Space Mission Areas Chapter 8 Joint Space Mission Areas Maj Christopher J. King, USAF; and MAJ Kenneth G. Kemmerly, USA Adm Alfred Thayer Mahan saw the earth s oceans as a medium for force projection and commerce which begged

More information

SCIENCE & TECHNOLOGY ENABLING ARMAMENTS ACQUISITION MODERNIZATION

SCIENCE & TECHNOLOGY ENABLING ARMAMENTS ACQUISITION MODERNIZATION SCIENCE & TECHNOLOGY ENABLING ARMAMENTS ACQUISITION MODERNIZATION Joe Pelino ARDEC Director of Technology 18 April 2018 UNPARALLELED COMMITMENT &SOLUTIONS Act like someone s life depends on what we do.

More information

CHAPTER 4 MILITARY INTELLIGENCE UNIT CAPABILITIES Mission. Elements of Intelligence Support. Signals Intelligence (SIGINT) Electronic Warfare (EW)

CHAPTER 4 MILITARY INTELLIGENCE UNIT CAPABILITIES Mission. Elements of Intelligence Support. Signals Intelligence (SIGINT) Electronic Warfare (EW) CHAPTER 4 MILITARY INTELLIGENCE UNIT CAPABILITIES Mission The IEW support mission at all echelons is to provide intelligence, EW, and CI support to help you accomplish your mission. Elements of Intelligence

More information

Making the World Safer: reducing the threat of weapons of mass destruction

Making the World Safer: reducing the threat of weapons of mass destruction Making the World Safer: reducing the threat of weapons of mass destruction Weapons of mass destruction are the most serious threat to the United States Nuclear Weapons...difficult to acquire, devastating

More information

1 Nuclear Weapons. Chapter 1 Issues in the International Community. Part I Security Environment Surrounding Japan

1 Nuclear Weapons. Chapter 1 Issues in the International Community. Part I Security Environment Surrounding Japan 1 Nuclear Weapons 1 The United States, the former Soviet Union, the United Kingdom, France, and China. France and China signed the NPT in 1992. 2 Article 6 of the NPT sets out the obligation of signatory

More information

snapshots of 17 key Air Force space programs experiments, development, production, sustainment, and upgrades. The list is not allinclusive.

snapshots of 17 key Air Force space programs experiments, development, production, sustainment, and upgrades. The list is not allinclusive. Snapshots of Space M D ata sheets that follow are snapshots of 17 key Air Force space programs experiments, development, production, sustainment, and upgrades. The list is not allinclusive. It is based

More information

Chapter I SUBMUNITION UNEXPLODED ORDNANCE (UXO) HAZARDS

Chapter I SUBMUNITION UNEXPLODED ORDNANCE (UXO) HAZARDS Chapter I SUBMUNITION UNEXPLODED ORDNANCE (UXO) HAZARDS 1. Background a. Saturation of unexploded submunitions has become a characteristic of the modern battlefield. The potential for fratricide from UXO

More information

STATEMENT J. MICHAEL GILMORE DIRECTOR, OPERATIONAL TEST AND EVALUATION OFFICE OF THE SECRETARY OF DEFENSE BEFORE THE SENATE ARMED SERVICES COMMITTEE

STATEMENT J. MICHAEL GILMORE DIRECTOR, OPERATIONAL TEST AND EVALUATION OFFICE OF THE SECRETARY OF DEFENSE BEFORE THE SENATE ARMED SERVICES COMMITTEE FOR OFFICIAL USE ONLY UNTIL RELEASE BY THE COMMITTEE ON ARMED SERVICES U.S. SENATE STATEMENT BY J. MICHAEL GILMORE DIRECTOR, OPERATIONAL TEST AND EVALUATION OFFICE OF THE SECRETARY OF DEFENSE BEFORE THE

More information

STATEMENT OF DR. STEPHEN YOUNGER DIRECTOR, DEFENSE THREAT REDUCTION AGENCY BEFORE THE SENATE ARMED SERVICES COMMITTEE

STATEMENT OF DR. STEPHEN YOUNGER DIRECTOR, DEFENSE THREAT REDUCTION AGENCY BEFORE THE SENATE ARMED SERVICES COMMITTEE FOR OFFICIAL USE ONLY UNTIL RELEASED BY THE SENATE ARMED SERVICES COMMITTEE STATEMENT OF DR. STEPHEN YOUNGER DIRECTOR, DEFENSE THREAT REDUCTION AGENCY BEFORE THE SENATE ARMED SERVICES COMMITTEE EMERGING

More information

Nuclear dependency. John Ainslie

Nuclear dependency. John Ainslie Nuclear dependency John Ainslie John Ainslie is coordinator of the Scottish Campaign for Nuclear Disarmament. These excerpts are from The Future of the British Bomb, his comprehensive review of the issues

More information

The Necessity of Human Intelligence in Modern Warfare Bruce Scott Bollinger United States Army Sergeants Major Academy Class # 35 SGM Foreman 31 July

The Necessity of Human Intelligence in Modern Warfare Bruce Scott Bollinger United States Army Sergeants Major Academy Class # 35 SGM Foreman 31 July The Necessity of Human Intelligence in Modern Warfare Bruce Scott Bollinger United States Army Sergeants Major Academy Class # 35 SGM Foreman 31 July 2009 Since the early days of the Revolutionary War,

More information

STATEMENT BY LIEUTENANT GENERAL RICHARD P. FORMICA, USA

STATEMENT BY LIEUTENANT GENERAL RICHARD P. FORMICA, USA RECORD VERSION STATEMENT BY LIEUTENANT GENERAL RICHARD P. FORMICA, USA COMMANDING GENERAL, U.S. ARMY SPACE AND MISSILE DEFENSE COMMAND AND ARMY FORCES STRATEGIC COMMAND BEFORE THE COMMITTEE ON ARMED SERVICES

More information

A/55/116. General Assembly. United Nations. General and complete disarmament: Missiles. Contents. Report of the Secretary-General

A/55/116. General Assembly. United Nations. General and complete disarmament: Missiles. Contents. Report of the Secretary-General United Nations General Assembly Distr.: General 6 July 2000 Original: English A/55/116 Fifty-fifth session Item 74 (h) of the preliminary list* General and complete disarmament: Missiles Report of the

More information

Humanitarian benefits of emerging technologies in the area of lethal autonomous weapon systems

Humanitarian benefits of emerging technologies in the area of lethal autonomous weapon systems Group of Governmental Experts of the High Contracting Parties to the Convention on Prohibitions or Restrictions on the Use of Certain Conventional Weapons Which May Be Deemed to Be Excessively Injurious

More information

Report to Congress. Theater Missile Defense. Architecture Options. for the Asia-Pacific Region

Report to Congress. Theater Missile Defense. Architecture Options. for the Asia-Pacific Region Report to Congress on Theater Missile Defense Architecture Options for the Asia-Pacific Region I. INTRODUCTION PURPOSE This report responds to the Fiscal Year 1999 National Defense Authorization Act which

More information

HOW MUCH REMOTE SITUATIONAL UNDERSTANDING IS ACHIEVABLE IN THE TIME FRAME?

HOW MUCH REMOTE SITUATIONAL UNDERSTANDING IS ACHIEVABLE IN THE TIME FRAME? Chapter Two HOW MUCH REMOTE SITUATIONAL UNDERSTANDING IS ACHIEVABLE IN THE 2015 2020 TIME FRAME? As mentioned earlier, the first question posed by the ASB asked about the level of intelligence or situational

More information

FORWARD, READY, NOW!

FORWARD, READY, NOW! FORWARD, READY, NOW! The United States Air Force (USAF) is the World s Greatest Air Force Powered by Airmen, Fueled by Innovation. USAFE-AFAFRICA is America s forward-based combat airpower, delivering

More information

Missile Defense: Time to Go Big

Missile Defense: Time to Go Big December 2016 Missile Defense: Time to Go Big Thomas Karako Overview Nations around the world continue to develop a growing range of ballistic and cruise missiles to asymmetrically threaten U.S. forces,

More information

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 7 R-1 Line #9

UNCLASSIFIED. UNCLASSIFIED Army Page 1 of 7 R-1 Line #9 Exhibit R-2, RDT&E Budget Item Justification: PB 2015 Army Date: March 2014 2040:, Development, Test & Evaluation, Army / BA 2: Applied COST ($ in Millions) Prior Years FY 2013 FY 2014 FY 2015 Base FY

More information

ALLIANCE MARITIME STRATEGY

ALLIANCE MARITIME STRATEGY ALLIANCE MARITIME STRATEGY I. INTRODUCTION 1. The evolving international situation of the 21 st century heralds new levels of interdependence between states, international organisations and non-governmental

More information

Role and Modernization Trends of China s Second Artillery

Role and Modernization Trends of China s Second Artillery Role and Modernization Trends of China s Second Artillery Speaker: Dr. Roshan Khanijo, Senior Research Fellow, United Services Institution of India Chair: M V Rappai, Honorary Fellow, ICS 14 October 2015

More information

NATIONAL INSTITUTE FOR PUBLIC POLICY. National Missile Defense: Why? And Why Now?

NATIONAL INSTITUTE FOR PUBLIC POLICY. National Missile Defense: Why? And Why Now? NATIONAL INSTITUTE FOR PUBLIC POLICY National Missile Defense: Why? And Why Now? By Dr. Keith B. Payne President, National Institute for Public Policy Adjunct Professor, Georgetown University Distributed

More information

To date, space has been a fairly unchallenged environment to work in. The

To date, space has been a fairly unchallenged environment to work in. The Developing Tomorrow s Space War Fighter The Argument for Contracting Out Satellite Operations Maj Sean C. Temple, USAF Disclaimer: The views and opinions expressed or implied in the Journal are those of

More information

ASSIGNMENT An element that enables a seadependent nation to project its political, economic, and military strengths seaward is known as 1-5.

ASSIGNMENT An element that enables a seadependent nation to project its political, economic, and military strengths seaward is known as 1-5. ASSIGNMENT 1 Textbook Assignment: Chapter 1, U.S. Naval Tradition, pages 1-1 through 1-22 and Chapter 2, Leadership and Administrative Responsibilities, pages 2-1 through 2-8. 1-n element that enables

More information

SELECTED EXCERPTS ON CHINESE SPACE AND COUNTERSPACE ACTIVITIES FROM: ANNUAL REPORT ON THE MILITARY POWER OF THE PEOPLE S REPUBLIC OF CHINA

SELECTED EXCERPTS ON CHINESE SPACE AND COUNTERSPACE ACTIVITIES FROM: ANNUAL REPORT ON THE MILITARY POWER OF THE PEOPLE S REPUBLIC OF CHINA SELECTED EXCERPTS ON CHINESE SPACE AND COUNTERSPACE ACTIVITIES FROM: ANNUAL REPORT ON THE MILITARY POWER OF THE PEOPLE S REPUBLIC OF CHINA ANNUAL REPORT ON THE MILITARY POWER OF THE PEOPLE S REPUBLIC OF

More information

Analysis of Fiscal Year 2018 National Defense Authorization Bill: HR Differences Between House and Senate NDAA on Major Nuclear Provisions

Analysis of Fiscal Year 2018 National Defense Authorization Bill: HR Differences Between House and Senate NDAA on Major Nuclear Provisions Analysis of Fiscal Year 2018 National Defense Authorization Bill: HR 2810 Differences Between House and Senate NDAA on Major Nuclear Provisions A. Treaties: 1. Intermediate-Range Nuclear Forces (INF) Treaty

More information

Government of Azerbaijan

Government of Azerbaijan 15. EXPLOSIVE ORDNANCE DISPOSAL (EOD) 1. General Explosive Ordnance Disposal (EOD) is the detection, identification, rendering safe, recovery and final disposal of Unexploded Ordnance (UXO), which has

More information

Air-Sea Battle & Technology Development

Air-Sea Battle & Technology Development Headquarters U.S. Air Force Air-Sea Battle & Technology Development Col Gantt AF/A5XS 20 Mar 12 1 Agenda Background & Scope Definitions ASB Concept Overview ASB Central Idea: Networked, Integrated, Attack-in-Depth

More information

Technical parameters of the 9K720 Iskander (SS-26 Stone)

Technical parameters of the 9K720 Iskander (SS-26 Stone) AARMS Vol. 7, No. 4 (2008) 705 710 TECHNOLOGY Technical parameters of the 9K720 Iskander (SS-26 Stone) JÁNOS DEÁK Miklós Zrínyi National Defence University, Budapest, Hungary The Iskander Missile System

More information

CRS Report for Congress

CRS Report for Congress Order Code RS21376 Updated March 25, 2003 CRS Report for Congress Received through the CRS Web Iraq: Weapons of Mass Destruction (WMD) Capable Missiles and Unmanned Aerial Vehicles (UAVs) Summary Andrew

More information

UNCLASSIFIED FY 2008/2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2007 Exhibit R-2

UNCLASSIFIED FY 2008/2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2007 Exhibit R-2 Exhibit R-2 PROGRAM ELEMENT: 0605155N PROGRAM ELEMENT TITLE: FLEET TACTICAL DEVELOPMENT AND EVALUATION COST: (Dollars in Thousands) Project Number & Title FY 2006 Actual FY 2007 FY 2008 FY 2009 FY 2010

More information

How Can the Army Improve Rapid-Reaction Capability?

How Can the Army Improve Rapid-Reaction Capability? Chapter Six How Can the Army Improve Rapid-Reaction Capability? IN CHAPTER TWO WE SHOWED THAT CURRENT LIGHT FORCES have inadequate firepower, mobility, and protection for many missions, particularly for

More information

Setting Priorities for Nuclear Modernization. By Lawrence J. Korb and Adam Mount February

Setting Priorities for Nuclear Modernization. By Lawrence J. Korb and Adam Mount February LT. REBECCA REBARICH/U.S. NAVY VIA ASSOCIATED PRESS Setting Priorities for Nuclear Modernization By Lawrence J. Korb and Adam Mount February 2016 WWW.AMERICANPROGRESS.ORG Introduction and summary In the

More information

UNCLASSIFIED FY 2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2008 Exhibit R-2

UNCLASSIFIED FY 2009 RDT&E,N BUDGET ITEM JUSTIFICATION SHEET DATE: February 2008 Exhibit R-2 Exhibit R-2 PROGRAM ELEMENT: 0605155N PROGRAM ELEMENT TITLE: FLEET TACTICAL DEVELOPMENT AND EVALUATION COST: (Dollars in Thousands) Project Number & Title FY 2007 Actual FY 2008 FY 2009 FY 2010 FY 2011

More information

Armed Unmanned Systems

Armed Unmanned Systems Armed Unmanned Systems A Perspective on Navy Needs, Initiatives and Vision Rear Admiral Tim Heely, USN Program Executive Officer Strike Weapons and Unmanned Aviation 10 July 2007 Armed UASs A first time

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO10951 TITLE: Mission Planning Technology DISTRIBUTION: Approved for public release, distribution unlimited This paper is part

More information

UNCLASSIFIED. FY 2016 Base FY 2016 OCO

UNCLASSIFIED. FY 2016 Base FY 2016 OCO Exhibit R-2, RDT&E Budget Item Justification: PB 2016 Army Date: February 2015 2040: Research, Development, Test & Evaluation, Army / BA 3: Advanced Technology Development (ATD) COST ($ in Millions) Prior

More information

ASSESSMENT OF THE SAFETY OF US NUCLEAR WEAPONS AND RELATED NUCLEAR TEST REQUIREMENTS

ASSESSMENT OF THE SAFETY OF US NUCLEAR WEAPONS AND RELATED NUCLEAR TEST REQUIREMENTS OCCASIONAL REPORT ASSESSMENT OF THE SAFETY OF US NUCLEAR WEAPONS AND RELATED NUCLEAR TEST REQUIREMENTS Ray E. Kidder a This brief report was prepared in response to a letter of 17 July 1990 by Honorable

More information